Tissue-engineered skin substitute enhances wound healing after radiation therapy

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

OBJECTIVE: When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. MATERIALS AND METHODS: A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm2). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). RESULTS: Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm2 were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. CONCLUSIONS: These results indicate that BTESS is the preferred treatment for irradiated wound ulcers.

Original languageEnglish
Pages (from-to)120-129
Number of pages10
JournalAdvances in Skin and Wound Care
Volume29
Issue number3
DOIs
Publication statusPublished - 1 Mar 2016

Fingerprint

Artificial Skin
Wound Healing
Radiotherapy
Wounds and Injuries
Skin
Transforming Growth Factors
Keratinocytes
Vascular Endothelial Growth Factor A
Regeneration
Skin Ulcer
Control Groups
Intermediate Filaments
Extracellular Space
Hematoxylin
Eosine Yellowish-(YS)
Fibrin
Nude Mice

Keywords

  • autologous skin substitute, irradiated wound, fibrin, tissue engineering

ASJC Scopus subject areas

  • Advanced and Specialised Nursing
  • Dermatology

Cite this

@article{e52e6b28100c48fb958fdfcdb6d22d39,
title = "Tissue-engineered skin substitute enhances wound healing after radiation therapy",
abstract = "OBJECTIVE: When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. MATERIALS AND METHODS: A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm2). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). RESULTS: Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm2 were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. CONCLUSIONS: These results indicate that BTESS is the preferred treatment for irradiated wound ulcers.",
keywords = "autologous skin substitute, irradiated wound, fibrin, tissue engineering",
author = "Busra, {Mohd Fauzi Bin Mh} and Chowdhury, {Shiplu Roy} and Ismail, {Fuad Bin} and Saim, {Aminuddin Bin} and Idrus, {Ruszymah Bt Hj}",
year = "2016",
month = "3",
day = "1",
doi = "10.1097/01.ASW.0000480556.78111.e4",
language = "English",
volume = "29",
pages = "120--129",
journal = "Advances in Skin and Wound Care",
issn = "1527-7941",
publisher = "Lippincott Williams and Wilkins",
number = "3",

}

TY - JOUR

T1 - Tissue-engineered skin substitute enhances wound healing after radiation therapy

AU - Busra, Mohd Fauzi Bin Mh

AU - Chowdhury, Shiplu Roy

AU - Ismail, Fuad Bin

AU - Saim, Aminuddin Bin

AU - Idrus, Ruszymah Bt Hj

PY - 2016/3/1

Y1 - 2016/3/1

N2 - OBJECTIVE: When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. MATERIALS AND METHODS: A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm2). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). RESULTS: Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm2 were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. CONCLUSIONS: These results indicate that BTESS is the preferred treatment for irradiated wound ulcers.

AB - OBJECTIVE: When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound. MATERIALS AND METHODS: A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm2). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC). RESULTS: Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm2 were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds. CONCLUSIONS: These results indicate that BTESS is the preferred treatment for irradiated wound ulcers.

KW - autologous skin substitute, irradiated wound, fibrin, tissue engineering

UR - http://www.scopus.com/inward/record.url?scp=84975761276&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84975761276&partnerID=8YFLogxK

U2 - 10.1097/01.ASW.0000480556.78111.e4

DO - 10.1097/01.ASW.0000480556.78111.e4

M3 - Article

VL - 29

SP - 120

EP - 129

JO - Advances in Skin and Wound Care

JF - Advances in Skin and Wound Care

SN - 1527-7941

IS - 3

ER -