### Abstract

For λ ≥ 0, α > 0 and β ≥ 0, let B (λ, α, β) be the class of function defined in the open unit disk U by (Formula presented) where f (z) = z + a_{2}z^{2} +… is an analytic function. Also, in this paper, we introduce a new class of B (λ, α, ρ). Hence, for f ∈ B (λ, α, β) and f ∈ B (λ, α, ρ), the sharp upper bounds are obtained for the Fekete-Szegö functional |a_{3} − μa^{2} _{2}| where μ are real and complex.

Original language | English |
---|---|

Pages (from-to) | 5223-5231 |

Number of pages | 9 |

Journal | Global Journal of Pure and Applied Mathematics |

Volume | 12 |

Issue number | 6 |

Publication status | Published - 2016 |

### Fingerprint

### Keywords

- Analytic functions
- Fekete-Szegö functional
- Normalized functions
- Univalent functions

### ASJC Scopus subject areas

- Mathematics(all)
- Applied Mathematics

### Cite this

*Global Journal of Pure and Applied Mathematics*,

*12*(6), 5223-5231.

**The Fekete-Szegö problem for some classes of analytic functions.** / Yusoff, Nik Nadhilah Nik Mohd; Darus, Maslina.

Research output: Contribution to journal › Article

*Global Journal of Pure and Applied Mathematics*, vol. 12, no. 6, pp. 5223-5231.

}

TY - JOUR

T1 - The Fekete-Szegö problem for some classes of analytic functions

AU - Yusoff, Nik Nadhilah Nik Mohd

AU - Darus, Maslina

PY - 2016

Y1 - 2016

N2 - For λ ≥ 0, α > 0 and β ≥ 0, let B (λ, α, β) be the class of function defined in the open unit disk U by (Formula presented) where f (z) = z + a2z2 +… is an analytic function. Also, in this paper, we introduce a new class of B (λ, α, ρ). Hence, for f ∈ B (λ, α, β) and f ∈ B (λ, α, ρ), the sharp upper bounds are obtained for the Fekete-Szegö functional |a3 − μa2 2| where μ are real and complex.

AB - For λ ≥ 0, α > 0 and β ≥ 0, let B (λ, α, β) be the class of function defined in the open unit disk U by (Formula presented) where f (z) = z + a2z2 +… is an analytic function. Also, in this paper, we introduce a new class of B (λ, α, ρ). Hence, for f ∈ B (λ, α, β) and f ∈ B (λ, α, ρ), the sharp upper bounds are obtained for the Fekete-Szegö functional |a3 − μa2 2| where μ are real and complex.

KW - Analytic functions

KW - Fekete-Szegö functional

KW - Normalized functions

KW - Univalent functions

UR - http://www.scopus.com/inward/record.url?scp=85019507141&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85019507141&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85019507141

VL - 12

SP - 5223

EP - 5231

JO - Global Journal of Pure and Applied Mathematics

JF - Global Journal of Pure and Applied Mathematics

SN - 0973-1768

IS - 6

ER -