The fate of ammonium-nitrogen in leachate contaminated groundwater system

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Hydrogeochemical conditions influences strongly on ammonium attenuation and ultimately its long-term fate in the subsurface. The purpose of this work was to identify the conditions influencing the persistence of ammonium-nitrogen in the contaminated groundwater system of Taman Beringin ex-landfill site in Malaysia. This study applies hydrogeochemical data extractions techniques of redox sensitive groundwater species from previously installed monitoring wells between February to August 2014. Electrochemical measurements of Oxidation Reduction Potential (ORP) were collected successively with several other physicochemical parameters including pH, Temperature, and DO in the landfill site. The result show that the mean concentration of NH4-N, NO2-N, and NO3-N are: (47.98±81.83 mg/L), (0.17±0.22 mg/L) and (6.11± 8.74 mg/L) respectively. The mean range of redox potentials (-10.25±128.28 mV) delineated areas of strongly reducing conditions. Based on the evaluation of the data, NH4-N, NO2-N and NO3-N accounts for 89.98%, 0.28% and 9.7% respectively of the groundwater concentration of total nitrogen, while a miniature proportion of oxidisable nitrogen concentrations (10.02%) are attributed t o biological process of nitrification. Relationship exist between data set NH4-N and ORP (r = -0.65009). It was concluded that although biological attenuation processes are effectively decreasing the ammonia concentrations in some of the wells, the processes are inhibited by chemical conditions that were attributed to Fe reducing conditions as observed in some of the wells. NH4-N will remain persistent and at elevated levels as much as the conditions persist and contributes in determining the fate of NH4-N in the Taman Beringin ground water system.

Original languageEnglish
Title of host publication2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium
PublisherAmerican Institute of Physics Inc.
Volume1678
ISBN (Electronic)9780735413252
DOIs
Publication statusPublished - 25 Sep 2015
Event2015 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2015 - Selangor, Malaysia
Duration: 15 Apr 201516 Apr 2015

Other

Other2015 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2015
CountryMalaysia
CitySelangor
Period15/4/1516/4/15

Fingerprint

ground water
nitrogen
landfills
attenuation
Malaysia
oxidation
ammonia
proportion
evaluation

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Atta, M., & Wan Yaacob, W. Z. (2015). The fate of ammonium-nitrogen in leachate contaminated groundwater system. In 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium (Vol. 1678). [020007] American Institute of Physics Inc.. https://doi.org/10.1063/1.4931192

The fate of ammonium-nitrogen in leachate contaminated groundwater system. / Atta, M.; Wan Yaacob, Wan Zuhairi.

2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. Vol. 1678 American Institute of Physics Inc., 2015. 020007.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Atta, M & Wan Yaacob, WZ 2015, The fate of ammonium-nitrogen in leachate contaminated groundwater system. in 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. vol. 1678, 020007, American Institute of Physics Inc., 2015 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2015, Selangor, Malaysia, 15/4/15. https://doi.org/10.1063/1.4931192
Atta M, Wan Yaacob WZ. The fate of ammonium-nitrogen in leachate contaminated groundwater system. In 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. Vol. 1678. American Institute of Physics Inc. 2015. 020007 https://doi.org/10.1063/1.4931192
Atta, M. ; Wan Yaacob, Wan Zuhairi. / The fate of ammonium-nitrogen in leachate contaminated groundwater system. 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. Vol. 1678 American Institute of Physics Inc., 2015.
@inproceedings{99c3604c272c4561a8fd0b129417b347,
title = "The fate of ammonium-nitrogen in leachate contaminated groundwater system",
abstract = "Hydrogeochemical conditions influences strongly on ammonium attenuation and ultimately its long-term fate in the subsurface. The purpose of this work was to identify the conditions influencing the persistence of ammonium-nitrogen in the contaminated groundwater system of Taman Beringin ex-landfill site in Malaysia. This study applies hydrogeochemical data extractions techniques of redox sensitive groundwater species from previously installed monitoring wells between February to August 2014. Electrochemical measurements of Oxidation Reduction Potential (ORP) were collected successively with several other physicochemical parameters including pH, Temperature, and DO in the landfill site. The result show that the mean concentration of NH4-N, NO2-N, and NO3-N are: (47.98±81.83 mg/L), (0.17±0.22 mg/L) and (6.11± 8.74 mg/L) respectively. The mean range of redox potentials (-10.25±128.28 mV) delineated areas of strongly reducing conditions. Based on the evaluation of the data, NH4-N, NO2-N and NO3-N accounts for 89.98{\%}, 0.28{\%} and 9.7{\%} respectively of the groundwater concentration of total nitrogen, while a miniature proportion of oxidisable nitrogen concentrations (10.02{\%}) are attributed t o biological process of nitrification. Relationship exist between data set NH4-N and ORP (r = -0.65009). It was concluded that although biological attenuation processes are effectively decreasing the ammonia concentrations in some of the wells, the processes are inhibited by chemical conditions that were attributed to Fe reducing conditions as observed in some of the wells. NH4-N will remain persistent and at elevated levels as much as the conditions persist and contributes in determining the fate of NH4-N in the Taman Beringin ground water system.",
author = "M. Atta and {Wan Yaacob}, {Wan Zuhairi}",
year = "2015",
month = "9",
day = "25",
doi = "10.1063/1.4931192",
language = "English",
volume = "1678",
booktitle = "2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium",
publisher = "American Institute of Physics Inc.",

}

TY - GEN

T1 - The fate of ammonium-nitrogen in leachate contaminated groundwater system

AU - Atta, M.

AU - Wan Yaacob, Wan Zuhairi

PY - 2015/9/25

Y1 - 2015/9/25

N2 - Hydrogeochemical conditions influences strongly on ammonium attenuation and ultimately its long-term fate in the subsurface. The purpose of this work was to identify the conditions influencing the persistence of ammonium-nitrogen in the contaminated groundwater system of Taman Beringin ex-landfill site in Malaysia. This study applies hydrogeochemical data extractions techniques of redox sensitive groundwater species from previously installed monitoring wells between February to August 2014. Electrochemical measurements of Oxidation Reduction Potential (ORP) were collected successively with several other physicochemical parameters including pH, Temperature, and DO in the landfill site. The result show that the mean concentration of NH4-N, NO2-N, and NO3-N are: (47.98±81.83 mg/L), (0.17±0.22 mg/L) and (6.11± 8.74 mg/L) respectively. The mean range of redox potentials (-10.25±128.28 mV) delineated areas of strongly reducing conditions. Based on the evaluation of the data, NH4-N, NO2-N and NO3-N accounts for 89.98%, 0.28% and 9.7% respectively of the groundwater concentration of total nitrogen, while a miniature proportion of oxidisable nitrogen concentrations (10.02%) are attributed t o biological process of nitrification. Relationship exist between data set NH4-N and ORP (r = -0.65009). It was concluded that although biological attenuation processes are effectively decreasing the ammonia concentrations in some of the wells, the processes are inhibited by chemical conditions that were attributed to Fe reducing conditions as observed in some of the wells. NH4-N will remain persistent and at elevated levels as much as the conditions persist and contributes in determining the fate of NH4-N in the Taman Beringin ground water system.

AB - Hydrogeochemical conditions influences strongly on ammonium attenuation and ultimately its long-term fate in the subsurface. The purpose of this work was to identify the conditions influencing the persistence of ammonium-nitrogen in the contaminated groundwater system of Taman Beringin ex-landfill site in Malaysia. This study applies hydrogeochemical data extractions techniques of redox sensitive groundwater species from previously installed monitoring wells between February to August 2014. Electrochemical measurements of Oxidation Reduction Potential (ORP) were collected successively with several other physicochemical parameters including pH, Temperature, and DO in the landfill site. The result show that the mean concentration of NH4-N, NO2-N, and NO3-N are: (47.98±81.83 mg/L), (0.17±0.22 mg/L) and (6.11± 8.74 mg/L) respectively. The mean range of redox potentials (-10.25±128.28 mV) delineated areas of strongly reducing conditions. Based on the evaluation of the data, NH4-N, NO2-N and NO3-N accounts for 89.98%, 0.28% and 9.7% respectively of the groundwater concentration of total nitrogen, while a miniature proportion of oxidisable nitrogen concentrations (10.02%) are attributed t o biological process of nitrification. Relationship exist between data set NH4-N and ORP (r = -0.65009). It was concluded that although biological attenuation processes are effectively decreasing the ammonia concentrations in some of the wells, the processes are inhibited by chemical conditions that were attributed to Fe reducing conditions as observed in some of the wells. NH4-N will remain persistent and at elevated levels as much as the conditions persist and contributes in determining the fate of NH4-N in the Taman Beringin ground water system.

UR - http://www.scopus.com/inward/record.url?scp=85006190481&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85006190481&partnerID=8YFLogxK

U2 - 10.1063/1.4931192

DO - 10.1063/1.4931192

M3 - Conference contribution

AN - SCOPUS:85006190481

VL - 1678

BT - 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium

PB - American Institute of Physics Inc.

ER -