The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro

Norazzila Omar, Lokanathan Yogeswaran, Zainul Rashid Mohd. Razi, Ruszymah Bt Haji Idrus

Research output: Contribution to journalArticle

Abstract

Background: Centella asiatica (L.) Urban, known as Indian Pennywort, is a tropical medicinal plant from Apiaceae family native to Southeast Asian countries. It has been widely used as a nerve tonic in Ayuverdic medicine since ancient times. However, whether it can substitute for neurotrophic factors to induce human mesenchymal stem cell (hMSCs) differentiation into the neural lineage remains unknown. This study aimed to investigate the effect of a raw extract of C. asiatica (L.) (RECA) on the neural differentiation of hMSCs in vitro. Methods: The hMSCs derived from human Wharton's jelly umbilical cord (hWJMSCs; n = 6) were treated with RECA at different concentrations; 400, 800, 1200, 1600, 2000 and 2400 μg/ml. The cytotoxicity of RECA was evaluated via the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) and cell proliferation assays. The hWJMSCs were then induced to neural lineage for 9 days either with RECA alone or RECA in combination with neurotrophic factors (NF). Cell morphological changes were observed under an inverted microscope, while the expression of the neural markers S100β, p75 NGFR, MBP, GFAP and MOG was analyzed by quantitative polymerase chain reaction and immunocytochemistry. The cell cycle profile of differentiated and undifferentiated hWJMSCs was investigated through cell cycle analysis. Results: RECA exerted effects on both proliferation and neural differentiation of hWJMSCs in a dose-dependent manner. RECA reduced the proliferation of hWJMSCs and was cytotoxic to cells above 1600 μg/ml, with IC50 value, 1875 ± 55.67 μg/ml. In parallel with the reduction in cell viability, cell enlargement was also observed at the end of the induction. Cells treated with RECA alone had more obvious protein expression of the neural markers compared to the other groups. Meanwhile, gene expression of the aforementioned markers was detected at low levels across the experimental groups. The supplementation of hWJMSCs with RECA did not change the normal life cycle of the cells. Conclusions: Although RECA reduced the proliferation of hWJMSCs, a low dose of RECA (400 μg/ml), alone or in combination of neurotrophic factors (NF + RECA 400 μg/ml), has the potential to differentiate hWJMSCs into Schwann cells and other neural lineage cells.

Original languageEnglish
Article number167
JournalBMC Complementary and Alternative Medicine
Volume19
Issue number1
DOIs
Publication statusPublished - 8 Jul 2019

Fingerprint

Centella
Mesenchymal Stromal Cells
Nerve Growth Factors
Cell Cycle
Wharton Jelly
Cell Enlargement
Apiaceae
Umbilical Cord
Schwann Cells
Medicinal Plants
Life Cycle Stages
Bromides
Inhibitory Concentration 50
Cell Differentiation
Cell Survival
Immunohistochemistry
Cell Proliferation
Medicine
In Vitro Techniques
Gene Expression

Keywords

  • Neural induction
  • Neurotrophic factors
  • Pegaga
  • Schwann cells
  • Umbilical cord stem cells

ASJC Scopus subject areas

  • Complementary and alternative medicine

Cite this

The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro. / Omar, Norazzila; Yogeswaran, Lokanathan; Mohd. Razi, Zainul Rashid; Bt Haji Idrus, Ruszymah.

In: BMC Complementary and Alternative Medicine, Vol. 19, No. 1, 167, 08.07.2019.

Research output: Contribution to journalArticle

@article{83c9ba81d5464c008ee86309ff3e1a5a,
title = "The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro",
abstract = "Background: Centella asiatica (L.) Urban, known as Indian Pennywort, is a tropical medicinal plant from Apiaceae family native to Southeast Asian countries. It has been widely used as a nerve tonic in Ayuverdic medicine since ancient times. However, whether it can substitute for neurotrophic factors to induce human mesenchymal stem cell (hMSCs) differentiation into the neural lineage remains unknown. This study aimed to investigate the effect of a raw extract of C. asiatica (L.) (RECA) on the neural differentiation of hMSCs in vitro. Methods: The hMSCs derived from human Wharton's jelly umbilical cord (hWJMSCs; n = 6) were treated with RECA at different concentrations; 400, 800, 1200, 1600, 2000 and 2400 μg/ml. The cytotoxicity of RECA was evaluated via the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) and cell proliferation assays. The hWJMSCs were then induced to neural lineage for 9 days either with RECA alone or RECA in combination with neurotrophic factors (NF). Cell morphological changes were observed under an inverted microscope, while the expression of the neural markers S100β, p75 NGFR, MBP, GFAP and MOG was analyzed by quantitative polymerase chain reaction and immunocytochemistry. The cell cycle profile of differentiated and undifferentiated hWJMSCs was investigated through cell cycle analysis. Results: RECA exerted effects on both proliferation and neural differentiation of hWJMSCs in a dose-dependent manner. RECA reduced the proliferation of hWJMSCs and was cytotoxic to cells above 1600 μg/ml, with IC50 value, 1875 ± 55.67 μg/ml. In parallel with the reduction in cell viability, cell enlargement was also observed at the end of the induction. Cells treated with RECA alone had more obvious protein expression of the neural markers compared to the other groups. Meanwhile, gene expression of the aforementioned markers was detected at low levels across the experimental groups. The supplementation of hWJMSCs with RECA did not change the normal life cycle of the cells. Conclusions: Although RECA reduced the proliferation of hWJMSCs, a low dose of RECA (400 μg/ml), alone or in combination of neurotrophic factors (NF + RECA 400 μg/ml), has the potential to differentiate hWJMSCs into Schwann cells and other neural lineage cells.",
keywords = "Neural induction, Neurotrophic factors, Pegaga, Schwann cells, Umbilical cord stem cells",
author = "Norazzila Omar and Lokanathan Yogeswaran and {Mohd. Razi}, {Zainul Rashid} and {Bt Haji Idrus}, Ruszymah",
year = "2019",
month = "7",
day = "8",
doi = "10.1186/s12906-019-2581-x",
language = "English",
volume = "19",
journal = "BMC Complementary and Alternative Medicine",
issn = "1472-6882",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro

AU - Omar, Norazzila

AU - Yogeswaran, Lokanathan

AU - Mohd. Razi, Zainul Rashid

AU - Bt Haji Idrus, Ruszymah

PY - 2019/7/8

Y1 - 2019/7/8

N2 - Background: Centella asiatica (L.) Urban, known as Indian Pennywort, is a tropical medicinal plant from Apiaceae family native to Southeast Asian countries. It has been widely used as a nerve tonic in Ayuverdic medicine since ancient times. However, whether it can substitute for neurotrophic factors to induce human mesenchymal stem cell (hMSCs) differentiation into the neural lineage remains unknown. This study aimed to investigate the effect of a raw extract of C. asiatica (L.) (RECA) on the neural differentiation of hMSCs in vitro. Methods: The hMSCs derived from human Wharton's jelly umbilical cord (hWJMSCs; n = 6) were treated with RECA at different concentrations; 400, 800, 1200, 1600, 2000 and 2400 μg/ml. The cytotoxicity of RECA was evaluated via the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) and cell proliferation assays. The hWJMSCs were then induced to neural lineage for 9 days either with RECA alone or RECA in combination with neurotrophic factors (NF). Cell morphological changes were observed under an inverted microscope, while the expression of the neural markers S100β, p75 NGFR, MBP, GFAP and MOG was analyzed by quantitative polymerase chain reaction and immunocytochemistry. The cell cycle profile of differentiated and undifferentiated hWJMSCs was investigated through cell cycle analysis. Results: RECA exerted effects on both proliferation and neural differentiation of hWJMSCs in a dose-dependent manner. RECA reduced the proliferation of hWJMSCs and was cytotoxic to cells above 1600 μg/ml, with IC50 value, 1875 ± 55.67 μg/ml. In parallel with the reduction in cell viability, cell enlargement was also observed at the end of the induction. Cells treated with RECA alone had more obvious protein expression of the neural markers compared to the other groups. Meanwhile, gene expression of the aforementioned markers was detected at low levels across the experimental groups. The supplementation of hWJMSCs with RECA did not change the normal life cycle of the cells. Conclusions: Although RECA reduced the proliferation of hWJMSCs, a low dose of RECA (400 μg/ml), alone or in combination of neurotrophic factors (NF + RECA 400 μg/ml), has the potential to differentiate hWJMSCs into Schwann cells and other neural lineage cells.

AB - Background: Centella asiatica (L.) Urban, known as Indian Pennywort, is a tropical medicinal plant from Apiaceae family native to Southeast Asian countries. It has been widely used as a nerve tonic in Ayuverdic medicine since ancient times. However, whether it can substitute for neurotrophic factors to induce human mesenchymal stem cell (hMSCs) differentiation into the neural lineage remains unknown. This study aimed to investigate the effect of a raw extract of C. asiatica (L.) (RECA) on the neural differentiation of hMSCs in vitro. Methods: The hMSCs derived from human Wharton's jelly umbilical cord (hWJMSCs; n = 6) were treated with RECA at different concentrations; 400, 800, 1200, 1600, 2000 and 2400 μg/ml. The cytotoxicity of RECA was evaluated via the MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) and cell proliferation assays. The hWJMSCs were then induced to neural lineage for 9 days either with RECA alone or RECA in combination with neurotrophic factors (NF). Cell morphological changes were observed under an inverted microscope, while the expression of the neural markers S100β, p75 NGFR, MBP, GFAP and MOG was analyzed by quantitative polymerase chain reaction and immunocytochemistry. The cell cycle profile of differentiated and undifferentiated hWJMSCs was investigated through cell cycle analysis. Results: RECA exerted effects on both proliferation and neural differentiation of hWJMSCs in a dose-dependent manner. RECA reduced the proliferation of hWJMSCs and was cytotoxic to cells above 1600 μg/ml, with IC50 value, 1875 ± 55.67 μg/ml. In parallel with the reduction in cell viability, cell enlargement was also observed at the end of the induction. Cells treated with RECA alone had more obvious protein expression of the neural markers compared to the other groups. Meanwhile, gene expression of the aforementioned markers was detected at low levels across the experimental groups. The supplementation of hWJMSCs with RECA did not change the normal life cycle of the cells. Conclusions: Although RECA reduced the proliferation of hWJMSCs, a low dose of RECA (400 μg/ml), alone or in combination of neurotrophic factors (NF + RECA 400 μg/ml), has the potential to differentiate hWJMSCs into Schwann cells and other neural lineage cells.

KW - Neural induction

KW - Neurotrophic factors

KW - Pegaga

KW - Schwann cells

KW - Umbilical cord stem cells

UR - http://www.scopus.com/inward/record.url?scp=85068844626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068844626&partnerID=8YFLogxK

U2 - 10.1186/s12906-019-2581-x

DO - 10.1186/s12906-019-2581-x

M3 - Article

C2 - 31286956

AN - SCOPUS:85068844626

VL - 19

JO - BMC Complementary and Alternative Medicine

JF - BMC Complementary and Alternative Medicine

SN - 1472-6882

IS - 1

M1 - 167

ER -