Superconductivity and elastic properties of La1.85-1.5xSr0.15+1.5xCu1-xMnxO4 with x = 0, 0.02 and 0.04

Research output: Contribution to journalArticle

Abstract

The effects of mixed-valence Mn substitution at the Cu site on the superconducting and elastic properties of La1.85-1.5xSr0.15+1.5xCu1-xMnxO4 (x = 0, 0.02 and 0.04) were studied. The samples were characterized by X-ray diffraction (XRD) method, temperature-dependent resistance measurements, scanning electron microscopy (SEM) and sound velocity measurements at room temperature. An elastic softening and a decrease in the critical temperature Tc was observed as Mn was substituted for Cu. The Debye temperature θD for x = 0 and 0.02 void free samples were calculated to be 459 K and 430 K, respectively. Internal lattice strain which is related to lattice parameter ratio a/c did not correlate with Tc. The electron-phonon coupling estimated using the conventional Bardeen-Cooper-Schrieffer (BCS) theory was λ = 0.367 (x = 0) and 0.368 (x = 0.02). The electron-phonon coupling in two-dimensional van Hove scenario was calculated to be λvH = 0.0148 (x = 0) and 0.0149 (x = 0.02). These results were compared with other cuprates and related superconductors. The comparison showed that other than electron-phonon coupling, the elastic moduli might play an important role in the mechanism of superconductivity in these materials.

Original languageEnglish
Pages (from-to)1907-1911
Number of pages5
JournalSains Malaysiana
Volume47
Issue number8
DOIs
Publication statusPublished - 1 Aug 2018

Fingerprint

superconductivity
elastic properties
BCS theory
electrons
acoustic velocity
trucks
velocity measurement
softening
cuprates
voids
lattice parameters
modulus of elasticity
critical temperature
specific heat
substitutes
valence
scanning electron microscopy
room temperature
diffraction
x rays

Keywords

  • Debye temperature
  • Elastic moduli
  • Electron-phonon coupling

ASJC Scopus subject areas

  • General

Cite this

@article{4fd31db60b0847beb6ab19ba08a2b836,
title = "Superconductivity and elastic properties of La1.85-1.5xSr0.15+1.5xCu1-xMnxO4 with x = 0, 0.02 and 0.04",
abstract = "The effects of mixed-valence Mn substitution at the Cu site on the superconducting and elastic properties of La1.85-1.5xSr0.15+1.5xCu1-xMnxO4 (x = 0, 0.02 and 0.04) were studied. The samples were characterized by X-ray diffraction (XRD) method, temperature-dependent resistance measurements, scanning electron microscopy (SEM) and sound velocity measurements at room temperature. An elastic softening and a decrease in the critical temperature Tc was observed as Mn was substituted for Cu. The Debye temperature θD for x = 0 and 0.02 void free samples were calculated to be 459 K and 430 K, respectively. Internal lattice strain which is related to lattice parameter ratio a/c did not correlate with Tc. The electron-phonon coupling estimated using the conventional Bardeen-Cooper-Schrieffer (BCS) theory was λ = 0.367 (x = 0) and 0.368 (x = 0.02). The electron-phonon coupling in two-dimensional van Hove scenario was calculated to be λvH = 0.0148 (x = 0) and 0.0149 (x = 0.02). These results were compared with other cuprates and related superconductors. The comparison showed that other than electron-phonon coupling, the elastic moduli might play an important role in the mechanism of superconductivity in these materials.",
keywords = "Debye temperature, Elastic moduli, Electron-phonon coupling",
author = "{Nor Azah}, {Nik Jaafar} and {Abd. Shukor}, Roslan",
year = "2018",
month = "8",
day = "1",
doi = "10.17576/jsm-2018-4708-32",
language = "English",
volume = "47",
pages = "1907--1911",
journal = "Sains Malaysiana",
issn = "0126-6039",
publisher = "Penerbit Universiti Kebangsaan Malaysia",
number = "8",

}

TY - JOUR

T1 - Superconductivity and elastic properties of La1.85-1.5xSr0.15+1.5xCu1-xMnxO4 with x = 0, 0.02 and 0.04

AU - Nor Azah, Nik Jaafar

AU - Abd. Shukor, Roslan

PY - 2018/8/1

Y1 - 2018/8/1

N2 - The effects of mixed-valence Mn substitution at the Cu site on the superconducting and elastic properties of La1.85-1.5xSr0.15+1.5xCu1-xMnxO4 (x = 0, 0.02 and 0.04) were studied. The samples were characterized by X-ray diffraction (XRD) method, temperature-dependent resistance measurements, scanning electron microscopy (SEM) and sound velocity measurements at room temperature. An elastic softening and a decrease in the critical temperature Tc was observed as Mn was substituted for Cu. The Debye temperature θD for x = 0 and 0.02 void free samples were calculated to be 459 K and 430 K, respectively. Internal lattice strain which is related to lattice parameter ratio a/c did not correlate with Tc. The electron-phonon coupling estimated using the conventional Bardeen-Cooper-Schrieffer (BCS) theory was λ = 0.367 (x = 0) and 0.368 (x = 0.02). The electron-phonon coupling in two-dimensional van Hove scenario was calculated to be λvH = 0.0148 (x = 0) and 0.0149 (x = 0.02). These results were compared with other cuprates and related superconductors. The comparison showed that other than electron-phonon coupling, the elastic moduli might play an important role in the mechanism of superconductivity in these materials.

AB - The effects of mixed-valence Mn substitution at the Cu site on the superconducting and elastic properties of La1.85-1.5xSr0.15+1.5xCu1-xMnxO4 (x = 0, 0.02 and 0.04) were studied. The samples were characterized by X-ray diffraction (XRD) method, temperature-dependent resistance measurements, scanning electron microscopy (SEM) and sound velocity measurements at room temperature. An elastic softening and a decrease in the critical temperature Tc was observed as Mn was substituted for Cu. The Debye temperature θD for x = 0 and 0.02 void free samples were calculated to be 459 K and 430 K, respectively. Internal lattice strain which is related to lattice parameter ratio a/c did not correlate with Tc. The electron-phonon coupling estimated using the conventional Bardeen-Cooper-Schrieffer (BCS) theory was λ = 0.367 (x = 0) and 0.368 (x = 0.02). The electron-phonon coupling in two-dimensional van Hove scenario was calculated to be λvH = 0.0148 (x = 0) and 0.0149 (x = 0.02). These results were compared with other cuprates and related superconductors. The comparison showed that other than electron-phonon coupling, the elastic moduli might play an important role in the mechanism of superconductivity in these materials.

KW - Debye temperature

KW - Elastic moduli

KW - Electron-phonon coupling

UR - http://www.scopus.com/inward/record.url?scp=85053620873&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053620873&partnerID=8YFLogxK

U2 - 10.17576/jsm-2018-4708-32

DO - 10.17576/jsm-2018-4708-32

M3 - Article

VL - 47

SP - 1907

EP - 1911

JO - Sains Malaysiana

JF - Sains Malaysiana

SN - 0126-6039

IS - 8

ER -