13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses

Kamalrul Azlan Azizan, Habtom W. Ressom, Eduardo R. Mendoza, Syarul Nataqain Baharum

Research output: Research - peer-reviewArticle

Abstract

Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30 °C, 37 °C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of how L. lactis regulates central metabolism under various conditions.

LanguageEnglish
Article numbere3451
JournalPeerJ
Volume2017
Issue number7
DOIs
StatePublished - 2017

Fingerprint

pentoses
Lactococcus lactis
agitation
phosphates
amino acids
temperature
Pentoses
Phosphates
Fluxes
Amino Acids
Temperature
Metabolic Flux Analysis
Pentose Phosphate Pathway
metabolism
Metabolism
malic enzyme
glycolysis
serine
fermentation
Pyruvic Acid

Keywords

  • C metabolic flux ratio analysis
  • GC-MS
  • L. lactis MG1363
  • PAAs

ASJC Scopus subject areas

  • Neuroscience(all)
  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

@article{fccb4486b9994a62b6cd0179ecae1c72,
title = "13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses",
abstract = "Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30 °C, 37 °C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of how L. lactis regulates central metabolism under various conditions.",
keywords = "C metabolic flux ratio analysis, GC-MS, L. lactis MG1363, PAAs",
author = "Azizan, {Kamalrul Azlan} and Ressom, {Habtom W.} and Mendoza, {Eduardo R.} and Baharum, {Syarul Nataqain}",
year = "2017",
doi = "10.7717/peerj.3451",
volume = "2017",
journal = "PeerJ",
issn = "2167-8359",
publisher = "PeerJ",
number = "7",

}

TY - JOUR

T1 - 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses

AU - Azizan,Kamalrul Azlan

AU - Ressom,Habtom W.

AU - Mendoza,Eduardo R.

AU - Baharum,Syarul Nataqain

PY - 2017

Y1 - 2017

N2 - Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30 °C, 37 °C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of how L. lactis regulates central metabolism under various conditions.

AB - Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses that affect the growth and performance of the bacterium. Although the response of L. lactis to several stresses has been described, the adaptation mechanisms at the level of in vivo fluxes have seldom been described. To gain insights into cellular metabolism, 13C metabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were used to measure the flux ratios of active pathways in the central metabolism of L. lactis when subjected to three conditions varying in temperature (30 °C, 37 °C) and agitation (with and without agitation at 150 rpm). Collectively, the concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and Pearson correlation analysis (r) was calculated to measure the pairwise relationship between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine and histidine were correlated strongly, suggesting changes in flux regulation in glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was mainly converted by glycolysis, highlighting the stability of L. lactis' central carbon metabolism despite different conditions. Higher flux ratios through oxaloacetate (OAA) from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase. Subsequently, more significant flux ratio differences were seen through the oxidative and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1 metabolism, suggesting NADPH requirements in response to environmental stimuli. These reactions could play an important role in optimization strategies for metabolic engineering in L. lactis. Overall, the integration of systematic analysis of amino acids and flux ratio analysis provides a systems-level understanding of how L. lactis regulates central metabolism under various conditions.

KW - C metabolic flux ratio analysis

KW - GC-MS

KW - L. lactis MG1363

KW - PAAs

UR - http://www.scopus.com/inward/record.url?scp=85021720475&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021720475&partnerID=8YFLogxK

U2 - 10.7717/peerj.3451

DO - 10.7717/peerj.3451

M3 - Article

VL - 2017

JO - PeerJ

T2 - PeerJ

JF - PeerJ

SN - 2167-8359

IS - 7

M1 - e3451

ER -