Abstract
Background: Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. Methods: HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Results: Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. Conclusion: These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy.
Original language | English |
---|---|
Pages (from-to) | 21-29 |
Number of pages | 9 |
Journal | Microvascular Research |
Volume | 86 |
Issue number | 1 |
DOIs | |
Publication status | Published - Mar 2013 |
Fingerprint
ASJC Scopus subject areas
- Biochemistry
- Cardiology and Cardiovascular Medicine
- Cell Biology
Cite this
Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells. / Fatimah, Simat Siti; Tan, Geok Chin; Kien Hui, Chua; Fariha, Mohd Manzor Nur; Tan, Ay Eeng; Hayati, Abdul Rahman.
In: Microvascular Research, Vol. 86, No. 1, 03.2013, p. 21-29.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells
AU - Fatimah, Simat Siti
AU - Tan, Geok Chin
AU - Kien Hui, Chua
AU - Fariha, Mohd Manzor Nur
AU - Tan, Ay Eeng
AU - Hayati, Abdul Rahman
PY - 2013/3
Y1 - 2013/3
N2 - Background: Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. Methods: HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Results: Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. Conclusion: These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy.
AB - Background: Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs. Methods: HAMCs were isolated from human term placenta and cultured in serial passages in culture medium supplemented with 10% fetal bovine serum. Morphological analysis, growth kinetic and CFU-F assay of HAMCs were assessed. In vitro differentiation and the immunophenotype of HAMCs at P5 were also analyzed. Quantitative PCR was used to determine the stemness, angiogenic and endothelial gene expression of cultured HAMCs after serial passage. Results: Cultured HAMCs displayed intermediate epitheloid-fibroblastoid morphology at an initial culture and the fibroblastoid features became more pronounced in later passages. They showed high clonogenic activity and faster proliferation at later passages with colony forming efficiency of 0.88%. HAMCs were successfully differentiated into adipocytes, osteocytes and neuron-like cells. Most HAMCs expressed CD9, CD44, CD73, CD90 and HLA-A,B,C but negligibly expressed CD31, CD34, CD45, CD117 and HLA-DR,DP,DQ. After serial passage, stemness genes Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4 and FZD-9 expressions significantly decreased. Of the angiogenic genes PECAM-1, bFGF, eNOS, VEGFR-2, VEGF, and vWF expressions also decreased significantly except angiopoietin-1 which significantly increased. No significant differences were observed in ABCG-2, BST-1, nestin, PGF and HGF expressions after serial passage. Conclusion: These results suggested that cultured HAMCs could be an alternative source of stem cells and may have the potential for angiogenesis and hence its use in stem-cell based therapy.
UR - http://www.scopus.com/inward/record.url?scp=84873714138&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873714138&partnerID=8YFLogxK
U2 - 10.1016/j.mvr.2012.12.004
DO - 10.1016/j.mvr.2012.12.004
M3 - Article
C2 - 23261754
AN - SCOPUS:84873714138
VL - 86
SP - 21
EP - 29
JO - Microvascular Research
JF - Microvascular Research
SN - 0026-2862
IS - 1
ER -