Stability assessment of earth slope using modified particle swarm optimization

Mohammad Khajehzadeh, Mohd. Raihan Taha, Ahmed El-Shafie, Mahdiyeh Eslami

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper has proposed an effective method to determine the minimum factor of safety (FS) and associated critical failure surface in slope stability analysis. The search for the minimum FS based on limit equilibrium methods is a complex optimization problem as the objective function is non-smooth and non-convex. Recently, particle swarm optimization (PSO) as a meta-heuristic optimization algorithm has been developed with success in treating various types of problems. In the current study, a new approach of PSO is proposed to calculate the safety factor of earth slopes. The safety factors of the general slip surfaces are calculated using Spencer method of slices, and each new slip surface is randomly generated by straight line technique. The reliability and efficiency of the proposed algorithm are examined by considering a number of published cases. The results indicate that the new method can predict a more critical failure mechanism with a lower FS and can outperform the other methods in the literature as well as standard PSO. Finally, the proposed method will be validated by considering an existing slope failure in Ulu Klang, Malaysia.

Original languageEnglish
Pages (from-to)79-87
Number of pages9
JournalJournal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an
Volume37
Issue number1
DOIs
Publication statusPublished - 1 Jan 2014

Fingerprint

Particle swarm optimization (PSO)
Earth (planet)
Safety factor
Slope stability

Keywords

  • earth slope
  • particle swarm optimization
  • safety assessment

ASJC Scopus subject areas

  • Engineering(all)

Cite this

@article{08ec5559cf4f4ea6ae03098a36a951c7,
title = "Stability assessment of earth slope using modified particle swarm optimization",
abstract = "This paper has proposed an effective method to determine the minimum factor of safety (FS) and associated critical failure surface in slope stability analysis. The search for the minimum FS based on limit equilibrium methods is a complex optimization problem as the objective function is non-smooth and non-convex. Recently, particle swarm optimization (PSO) as a meta-heuristic optimization algorithm has been developed with success in treating various types of problems. In the current study, a new approach of PSO is proposed to calculate the safety factor of earth slopes. The safety factors of the general slip surfaces are calculated using Spencer method of slices, and each new slip surface is randomly generated by straight line technique. The reliability and efficiency of the proposed algorithm are examined by considering a number of published cases. The results indicate that the new method can predict a more critical failure mechanism with a lower FS and can outperform the other methods in the literature as well as standard PSO. Finally, the proposed method will be validated by considering an existing slope failure in Ulu Klang, Malaysia.",
keywords = "earth slope, particle swarm optimization, safety assessment",
author = "Mohammad Khajehzadeh and Taha, {Mohd. Raihan} and Ahmed El-Shafie and Mahdiyeh Eslami",
year = "2014",
month = "1",
day = "1",
doi = "10.1080/02533839.2012.757041",
language = "English",
volume = "37",
pages = "79--87",
journal = "Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the Chinese Institute of Engineers",
issn = "0253-3839",
publisher = "Chinese Institute of Engineers",
number = "1",

}

TY - JOUR

T1 - Stability assessment of earth slope using modified particle swarm optimization

AU - Khajehzadeh, Mohammad

AU - Taha, Mohd. Raihan

AU - El-Shafie, Ahmed

AU - Eslami, Mahdiyeh

PY - 2014/1/1

Y1 - 2014/1/1

N2 - This paper has proposed an effective method to determine the minimum factor of safety (FS) and associated critical failure surface in slope stability analysis. The search for the minimum FS based on limit equilibrium methods is a complex optimization problem as the objective function is non-smooth and non-convex. Recently, particle swarm optimization (PSO) as a meta-heuristic optimization algorithm has been developed with success in treating various types of problems. In the current study, a new approach of PSO is proposed to calculate the safety factor of earth slopes. The safety factors of the general slip surfaces are calculated using Spencer method of slices, and each new slip surface is randomly generated by straight line technique. The reliability and efficiency of the proposed algorithm are examined by considering a number of published cases. The results indicate that the new method can predict a more critical failure mechanism with a lower FS and can outperform the other methods in the literature as well as standard PSO. Finally, the proposed method will be validated by considering an existing slope failure in Ulu Klang, Malaysia.

AB - This paper has proposed an effective method to determine the minimum factor of safety (FS) and associated critical failure surface in slope stability analysis. The search for the minimum FS based on limit equilibrium methods is a complex optimization problem as the objective function is non-smooth and non-convex. Recently, particle swarm optimization (PSO) as a meta-heuristic optimization algorithm has been developed with success in treating various types of problems. In the current study, a new approach of PSO is proposed to calculate the safety factor of earth slopes. The safety factors of the general slip surfaces are calculated using Spencer method of slices, and each new slip surface is randomly generated by straight line technique. The reliability and efficiency of the proposed algorithm are examined by considering a number of published cases. The results indicate that the new method can predict a more critical failure mechanism with a lower FS and can outperform the other methods in the literature as well as standard PSO. Finally, the proposed method will be validated by considering an existing slope failure in Ulu Klang, Malaysia.

KW - earth slope

KW - particle swarm optimization

KW - safety assessment

UR - http://www.scopus.com/inward/record.url?scp=84892903322&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84892903322&partnerID=8YFLogxK

U2 - 10.1080/02533839.2012.757041

DO - 10.1080/02533839.2012.757041

M3 - Article

AN - SCOPUS:84892903322

VL - 37

SP - 79

EP - 87

JO - Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the Chinese Institute of Engineers

JF - Chung-kuo Kung Ch'eng Hsueh K'an/Journal of the Chinese Institute of Engineers

SN - 0253-3839

IS - 1

ER -