Solid state self-healing system

Effects of using PDGEBA, PVC and PVA as linear healing agents

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The solid state self-healing system was obtained by employing a thermosetting epoxy resin, into which a thermoplastic is dissolved. In this study, the effect of healing efficiency was investigated by using different thermoplastic polymers which are poly(bisphenol-A-co-epichlorohydrin), polyvinyl chloride and polyvinyl alcohol as healing agents. Healing was achieved by heating the fractured resins to a specific temperature i.e. above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) to mobilize the polymeric chains of the healing agent. The curing reaction in the epoxy resins were characterized by means of Fourier transform infrared spectroscopy (FTIR). Izod impact test was been performed to demonstrate self-healing of the different specimens. Under test, it was found that healable resin with PDGEBA has highest healing efficiency followed by PVC and PVA, with 63%, 35% and 18% of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/network and thermoplastic polymer which led to the phase separation. Morphological studies prove the fracture-healing process and morphological properties of the resins.

Original languageEnglish
Title of host publication2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium
EditorsZahari Ibrahim, Haja Maideen Kader Maideen, Nazlina Ibrahim, Nurul Huda Abd Karim, Taufik Yusof, Fatimah Abdul Razak, Nurulkamal Maseran, Rozida Mohd Khalid, Noor Baa'yah Ibrahim, Hasidah Mohd. Sidek, Mohd Salmi Md Noorani, Norbert Simon
PublisherAmerican Institute of Physics Inc.
Pages275-282
Number of pages8
ISBN (Electronic)9780735412507
DOIs
Publication statusPublished - 1 Jan 2014
Event2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014 - Selangor, Malaysia
Duration: 9 Apr 201411 Apr 2014

Publication series

NameAIP Conference Proceedings
Volume1614
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014
CountryMalaysia
CitySelangor
Period9/4/1411/4/14

Fingerprint

healing
resins
resin
thermoplastics
solid state
epoxides
polymers
polymer
polyvinyl alcohol
bisphenol A
epoxy resins
poly(vinyl chloride)
glass transition temperature
Fourier transform infrared spectroscopy
FTIR spectroscopy
solubility
thermosetting resins
alcohol
glass
temperature

Keywords

  • Different healing agent
  • Healing effieciency
  • Impact test
  • Solid state self-healing

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science
  • Physics and Astronomy(all)
  • Nature and Landscape Conservation

Cite this

Muhamad, N. N., Md. Jamil, M. S., & Abdullah, S. (2014). Solid state self-healing system: Effects of using PDGEBA, PVC and PVA as linear healing agents. In Z. Ibrahim, H. M. K. Maideen, N. Ibrahim, N. H. A. Karim, T. Yusof, F. A. Razak, N. Maseran, R. M. Khalid, N. B. Ibrahim, H. M. Sidek, M. S. M. Noorani, ... N. Simon (Eds.), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium (pp. 275-282). (AIP Conference Proceedings; Vol. 1614). American Institute of Physics Inc.. https://doi.org/10.1063/1.4895208

Solid state self-healing system : Effects of using PDGEBA, PVC and PVA as linear healing agents. / Muhamad, Noor Nabilah; Md. Jamil, Mohd. Suzeren; Abdullah, Shahrum.

2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. ed. / Zahari Ibrahim; Haja Maideen Kader Maideen; Nazlina Ibrahim; Nurul Huda Abd Karim; Taufik Yusof; Fatimah Abdul Razak; Nurulkamal Maseran; Rozida Mohd Khalid; Noor Baa'yah Ibrahim; Hasidah Mohd. Sidek; Mohd Salmi Md Noorani; Norbert Simon. American Institute of Physics Inc., 2014. p. 275-282 (AIP Conference Proceedings; Vol. 1614).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Muhamad, NN, Md. Jamil, MS & Abdullah, S 2014, Solid state self-healing system: Effects of using PDGEBA, PVC and PVA as linear healing agents. in Z Ibrahim, HMK Maideen, N Ibrahim, NHA Karim, T Yusof, FA Razak, N Maseran, RM Khalid, NB Ibrahim, HM Sidek, MSM Noorani & N Simon (eds), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Conference Proceedings, vol. 1614, American Institute of Physics Inc., pp. 275-282, 2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014, Selangor, Malaysia, 9/4/14. https://doi.org/10.1063/1.4895208
Muhamad NN, Md. Jamil MS, Abdullah S. Solid state self-healing system: Effects of using PDGEBA, PVC and PVA as linear healing agents. In Ibrahim Z, Maideen HMK, Ibrahim N, Karim NHA, Yusof T, Razak FA, Maseran N, Khalid RM, Ibrahim NB, Sidek HM, Noorani MSM, Simon N, editors, 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. American Institute of Physics Inc. 2014. p. 275-282. (AIP Conference Proceedings). https://doi.org/10.1063/1.4895208
Muhamad, Noor Nabilah ; Md. Jamil, Mohd. Suzeren ; Abdullah, Shahrum. / Solid state self-healing system : Effects of using PDGEBA, PVC and PVA as linear healing agents. 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. editor / Zahari Ibrahim ; Haja Maideen Kader Maideen ; Nazlina Ibrahim ; Nurul Huda Abd Karim ; Taufik Yusof ; Fatimah Abdul Razak ; Nurulkamal Maseran ; Rozida Mohd Khalid ; Noor Baa'yah Ibrahim ; Hasidah Mohd. Sidek ; Mohd Salmi Md Noorani ; Norbert Simon. American Institute of Physics Inc., 2014. pp. 275-282 (AIP Conference Proceedings).
@inproceedings{f990142feaf4424f90efa154d7390859,
title = "Solid state self-healing system: Effects of using PDGEBA, PVC and PVA as linear healing agents",
abstract = "The solid state self-healing system was obtained by employing a thermosetting epoxy resin, into which a thermoplastic is dissolved. In this study, the effect of healing efficiency was investigated by using different thermoplastic polymers which are poly(bisphenol-A-co-epichlorohydrin), polyvinyl chloride and polyvinyl alcohol as healing agents. Healing was achieved by heating the fractured resins to a specific temperature i.e. above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) to mobilize the polymeric chains of the healing agent. The curing reaction in the epoxy resins were characterized by means of Fourier transform infrared spectroscopy (FTIR). Izod impact test was been performed to demonstrate self-healing of the different specimens. Under test, it was found that healable resin with PDGEBA has highest healing efficiency followed by PVC and PVA, with 63{\%}, 35{\%} and 18{\%} of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/network and thermoplastic polymer which led to the phase separation. Morphological studies prove the fracture-healing process and morphological properties of the resins.",
keywords = "Different healing agent, Healing effieciency, Impact test, Solid state self-healing",
author = "Muhamad, {Noor Nabilah} and {Md. Jamil}, {Mohd. Suzeren} and Shahrum Abdullah",
year = "2014",
month = "1",
day = "1",
doi = "10.1063/1.4895208",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
pages = "275--282",
editor = "Zahari Ibrahim and Maideen, {Haja Maideen Kader} and Nazlina Ibrahim and Karim, {Nurul Huda Abd} and Taufik Yusof and Razak, {Fatimah Abdul} and Nurulkamal Maseran and Khalid, {Rozida Mohd} and Ibrahim, {Noor Baa'yah} and Sidek, {Hasidah Mohd.} and Noorani, {Mohd Salmi Md} and Norbert Simon",
booktitle = "2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium",

}

TY - GEN

T1 - Solid state self-healing system

T2 - Effects of using PDGEBA, PVC and PVA as linear healing agents

AU - Muhamad, Noor Nabilah

AU - Md. Jamil, Mohd. Suzeren

AU - Abdullah, Shahrum

PY - 2014/1/1

Y1 - 2014/1/1

N2 - The solid state self-healing system was obtained by employing a thermosetting epoxy resin, into which a thermoplastic is dissolved. In this study, the effect of healing efficiency was investigated by using different thermoplastic polymers which are poly(bisphenol-A-co-epichlorohydrin), polyvinyl chloride and polyvinyl alcohol as healing agents. Healing was achieved by heating the fractured resins to a specific temperature i.e. above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) to mobilize the polymeric chains of the healing agent. The curing reaction in the epoxy resins were characterized by means of Fourier transform infrared spectroscopy (FTIR). Izod impact test was been performed to demonstrate self-healing of the different specimens. Under test, it was found that healable resin with PDGEBA has highest healing efficiency followed by PVC and PVA, with 63%, 35% and 18% of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/network and thermoplastic polymer which led to the phase separation. Morphological studies prove the fracture-healing process and morphological properties of the resins.

AB - The solid state self-healing system was obtained by employing a thermosetting epoxy resin, into which a thermoplastic is dissolved. In this study, the effect of healing efficiency was investigated by using different thermoplastic polymers which are poly(bisphenol-A-co-epichlorohydrin), polyvinyl chloride and polyvinyl alcohol as healing agents. Healing was achieved by heating the fractured resins to a specific temperature i.e. above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) to mobilize the polymeric chains of the healing agent. The curing reaction in the epoxy resins were characterized by means of Fourier transform infrared spectroscopy (FTIR). Izod impact test was been performed to demonstrate self-healing of the different specimens. Under test, it was found that healable resin with PDGEBA has highest healing efficiency followed by PVC and PVA, with 63%, 35% and 18% of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/network and thermoplastic polymer which led to the phase separation. Morphological studies prove the fracture-healing process and morphological properties of the resins.

KW - Different healing agent

KW - Healing effieciency

KW - Impact test

KW - Solid state self-healing

UR - http://www.scopus.com/inward/record.url?scp=85063853688&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063853688&partnerID=8YFLogxK

U2 - 10.1063/1.4895208

DO - 10.1063/1.4895208

M3 - Conference contribution

T3 - AIP Conference Proceedings

SP - 275

EP - 282

BT - 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium

A2 - Ibrahim, Zahari

A2 - Maideen, Haja Maideen Kader

A2 - Ibrahim, Nazlina

A2 - Karim, Nurul Huda Abd

A2 - Yusof, Taufik

A2 - Razak, Fatimah Abdul

A2 - Maseran, Nurulkamal

A2 - Khalid, Rozida Mohd

A2 - Ibrahim, Noor Baa'yah

A2 - Sidek, Hasidah Mohd.

A2 - Noorani, Mohd Salmi Md

A2 - Simon, Norbert

PB - American Institute of Physics Inc.

ER -