Second Hankel determinant for a class of analytic functions Defined by a fractional operator

Oqlah Al-Refai, Maslina Darus

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

By making use of the fractional differential operator Θα,β defined recently by the authors, a class of analytic functions is introduced. The sharp bound for the nonlinear functional |a2a4 - a3 2| is found. Several basic properties such as inclusion, integral transform, Hadamard product are also studied.

Original languageEnglish
Pages (from-to)234-241
Number of pages8
JournalEuropean Journal of Scientific Research
Volume28
Issue number2
Publication statusPublished - 2009

Fingerprint

Hankel Determinant
Hadamard transforms
Hadamard Product
Sharp Bound
Integral Transform
Mathematical operators
Differential operator
Analytic function
Fractional
transform
Inclusion
Operator
Class
product

Keywords

  • Convex functions
  • Fekete-Szeg ö
  • Fractional derivative
  • Hadamard product or convolution
  • Hankel determinant
  • Problem
  • Starlike functions

ASJC Scopus subject areas

  • General

Cite this

Second Hankel determinant for a class of analytic functions Defined by a fractional operator. / Al-Refai, Oqlah; Darus, Maslina.

In: European Journal of Scientific Research, Vol. 28, No. 2, 2009, p. 234-241.

Research output: Contribution to journalArticle

@article{0cc7ad50ec1c4c5d9c47cadd30449f84,
title = "Second Hankel determinant for a class of analytic functions Defined by a fractional operator",
abstract = "By making use of the fractional differential operator Θα,β defined recently by the authors, a class of analytic functions is introduced. The sharp bound for the nonlinear functional |a2a4 - a3 2| is found. Several basic properties such as inclusion, integral transform, Hadamard product are also studied.",
keywords = "Convex functions, Fekete-Szeg {\"o}, Fractional derivative, Hadamard product or convolution, Hankel determinant, Problem, Starlike functions",
author = "Oqlah Al-Refai and Maslina Darus",
year = "2009",
language = "English",
volume = "28",
pages = "234--241",
journal = "European Journal of Scientific Research",
issn = "1450-202X",
publisher = "European Journals Inc.",
number = "2",

}

TY - JOUR

T1 - Second Hankel determinant for a class of analytic functions Defined by a fractional operator

AU - Al-Refai, Oqlah

AU - Darus, Maslina

PY - 2009

Y1 - 2009

N2 - By making use of the fractional differential operator Θα,β defined recently by the authors, a class of analytic functions is introduced. The sharp bound for the nonlinear functional |a2a4 - a3 2| is found. Several basic properties such as inclusion, integral transform, Hadamard product are also studied.

AB - By making use of the fractional differential operator Θα,β defined recently by the authors, a class of analytic functions is introduced. The sharp bound for the nonlinear functional |a2a4 - a3 2| is found. Several basic properties such as inclusion, integral transform, Hadamard product are also studied.

KW - Convex functions

KW - Fekete-Szeg ö

KW - Fractional derivative

KW - Hadamard product or convolution

KW - Hankel determinant

KW - Problem

KW - Starlike functions

UR - http://www.scopus.com/inward/record.url?scp=65249123064&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65249123064&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:65249123064

VL - 28

SP - 234

EP - 241

JO - European Journal of Scientific Research

JF - European Journal of Scientific Research

SN - 1450-202X

IS - 2

ER -