### Abstract

We introduce some applications of first order differential subordination and superordination to obtain sufficient conditions for analytic functions containing Noor integral operator to satisfy q1(z) ≺ z[I_{n}f(z)]′/Φ[I_{n}f(z)] ≺ q2(z).

Original language | English |
---|---|

Pages (from-to) | 855-864 |

Number of pages | 10 |

Journal | Advanced Studies in Theoretical Physics |

Volume | 2 |

Issue number | 18 |

Publication status | Published - 2008 |

### Fingerprint

### Keywords

- Noor integral operator
- Subordination
- Superordination 2-corresponding author

### ASJC Scopus subject areas

- Physics and Astronomy(all)
- Mathematical Physics

### Cite this

*Advanced Studies in Theoretical Physics*,

*2*(18), 855-864.

**Sandwich theorems for Φ-like functions involving noor integral operator.** / Ibrahim, Rabha W.; Darus, Maslina.

Research output: Contribution to journal › Article

*Advanced Studies in Theoretical Physics*, vol. 2, no. 18, pp. 855-864.

}

TY - JOUR

T1 - Sandwich theorems for Φ-like functions involving noor integral operator

AU - Ibrahim, Rabha W.

AU - Darus, Maslina

PY - 2008

Y1 - 2008

N2 - We introduce some applications of first order differential subordination and superordination to obtain sufficient conditions for analytic functions containing Noor integral operator to satisfy q1(z) ≺ z[Inf(z)]′/Φ[Inf(z)] ≺ q2(z).

AB - We introduce some applications of first order differential subordination and superordination to obtain sufficient conditions for analytic functions containing Noor integral operator to satisfy q1(z) ≺ z[Inf(z)]′/Φ[Inf(z)] ≺ q2(z).

KW - Noor integral operator

KW - Subordination

KW - Superordination 2-corresponding author

UR - http://www.scopus.com/inward/record.url?scp=59849085063&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=59849085063&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:59849085063

VL - 2

SP - 855

EP - 864

JO - Advanced Studies in Theoretical Physics

JF - Advanced Studies in Theoretical Physics

SN - 1313-1311

IS - 18

ER -