Radiation dose reduction in thoracic and abdomen-pelvic CT using tube current modulation: A phantom study

Akmal Sabarudin, Zakira Mustafa, Khadijah Mohd Nassir, Hamzaini Abdul Hamid, Zhonghua Sun

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

This phantom study was designed to compare the radiation dose in thoracic and abdomen-pelvic CT scans with and without use of tube current modulation (TCM). Effective dose (ED) and size-specific dose estimation (SSDE) were calculated with the absorbed doses measured at selective radiosensitive organs using a thermoluminescence dosimeter-100 (TLD-100). When compared to protocols without TCM, the ED and SSDE were reduced significantly with use of TCM for both the thoracic and abdomen-pelvic CT. With use of TCM, the ED was 6.50 ± 0.29 mSv for thoracic and 6.01 ± 0.20 mSv for the abdomen-pelvic CT protocols. However without use of TCM, the ED was 20.07 ± 0.24 mSv and 17.30 ± 0.41 mSv for the thoracic and abdomen-pelvic CT protocols, respectively. The corresponding SSDE was 10.18 ± 0.48 mGy and 11.96 ± 0.27 mGy for the thoracic and abdomen-pelvic CT protocols with TCM, and 31.56 ± 0.43 mGy and 33.23 ± 0.05 mGy for thoracic and abdomen-pelvic CT protocols without TCM, respectively. The highest absorbed dose was measured at the breast with 8.58 ± 0.12 mGy in the TCM protocols and 51.52 ± 14.72 mGy in the protocols without TCM during thoracic CT. In the abdomen-pelvic CT, the absorbed dose was highest at the skin with 9.30 ± 1.28mGy and 29.99 ± 2.23 mGy in protocols with and without use of TCM, respectively. In conclusion, the TCM technique results in significant dose reduction; thus it is to be highly recommended in routine thoracic and abdomen-pelvic CT.

Original languageEnglish
Pages (from-to)319-328
Number of pages10
JournalJournal of Applied Clinical Medical Physics
Volume16
Issue number1
Publication statusPublished - 2015

Fingerprint

abdomen
Abdomen
Dosimetry
Thorax
Modulation
Radiation
tubes
modulation
dosage
radiation
Thermoluminescence
Computerized tomography
Dosimeters
Breast
thermoluminescence
breast
organs
Skin
dosimeters
CT protocol

Keywords

  • Computed tomography
  • Dosereduction
  • Radiation dose
  • Tube current modulation

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Radiation
  • Instrumentation

Cite this

Radiation dose reduction in thoracic and abdomen-pelvic CT using tube current modulation : A phantom study. / Sabarudin, Akmal; Mustafa, Zakira; Nassir, Khadijah Mohd; Abdul Hamid, Hamzaini; Sun, Zhonghua.

In: Journal of Applied Clinical Medical Physics, Vol. 16, No. 1, 2015, p. 319-328.

Research output: Contribution to journalArticle

@article{7ff5102e5cc84aeeb0e1617b6ab9bc7c,
title = "Radiation dose reduction in thoracic and abdomen-pelvic CT using tube current modulation: A phantom study",
abstract = "This phantom study was designed to compare the radiation dose in thoracic and abdomen-pelvic CT scans with and without use of tube current modulation (TCM). Effective dose (ED) and size-specific dose estimation (SSDE) were calculated with the absorbed doses measured at selective radiosensitive organs using a thermoluminescence dosimeter-100 (TLD-100). When compared to protocols without TCM, the ED and SSDE were reduced significantly with use of TCM for both the thoracic and abdomen-pelvic CT. With use of TCM, the ED was 6.50 ± 0.29 mSv for thoracic and 6.01 ± 0.20 mSv for the abdomen-pelvic CT protocols. However without use of TCM, the ED was 20.07 ± 0.24 mSv and 17.30 ± 0.41 mSv for the thoracic and abdomen-pelvic CT protocols, respectively. The corresponding SSDE was 10.18 ± 0.48 mGy and 11.96 ± 0.27 mGy for the thoracic and abdomen-pelvic CT protocols with TCM, and 31.56 ± 0.43 mGy and 33.23 ± 0.05 mGy for thoracic and abdomen-pelvic CT protocols without TCM, respectively. The highest absorbed dose was measured at the breast with 8.58 ± 0.12 mGy in the TCM protocols and 51.52 ± 14.72 mGy in the protocols without TCM during thoracic CT. In the abdomen-pelvic CT, the absorbed dose was highest at the skin with 9.30 ± 1.28mGy and 29.99 ± 2.23 mGy in protocols with and without use of TCM, respectively. In conclusion, the TCM technique results in significant dose reduction; thus it is to be highly recommended in routine thoracic and abdomen-pelvic CT.",
keywords = "Computed tomography, Dosereduction, Radiation dose, Tube current modulation",
author = "Akmal Sabarudin and Zakira Mustafa and Nassir, {Khadijah Mohd} and {Abdul Hamid}, Hamzaini and Zhonghua Sun",
year = "2015",
language = "English",
volume = "16",
pages = "319--328",
journal = "Journal of Applied Clinical Medical Physics",
issn = "1526-9914",
publisher = "American Institute of Physics Publising LLC",
number = "1",

}

TY - JOUR

T1 - Radiation dose reduction in thoracic and abdomen-pelvic CT using tube current modulation

T2 - A phantom study

AU - Sabarudin, Akmal

AU - Mustafa, Zakira

AU - Nassir, Khadijah Mohd

AU - Abdul Hamid, Hamzaini

AU - Sun, Zhonghua

PY - 2015

Y1 - 2015

N2 - This phantom study was designed to compare the radiation dose in thoracic and abdomen-pelvic CT scans with and without use of tube current modulation (TCM). Effective dose (ED) and size-specific dose estimation (SSDE) were calculated with the absorbed doses measured at selective radiosensitive organs using a thermoluminescence dosimeter-100 (TLD-100). When compared to protocols without TCM, the ED and SSDE were reduced significantly with use of TCM for both the thoracic and abdomen-pelvic CT. With use of TCM, the ED was 6.50 ± 0.29 mSv for thoracic and 6.01 ± 0.20 mSv for the abdomen-pelvic CT protocols. However without use of TCM, the ED was 20.07 ± 0.24 mSv and 17.30 ± 0.41 mSv for the thoracic and abdomen-pelvic CT protocols, respectively. The corresponding SSDE was 10.18 ± 0.48 mGy and 11.96 ± 0.27 mGy for the thoracic and abdomen-pelvic CT protocols with TCM, and 31.56 ± 0.43 mGy and 33.23 ± 0.05 mGy for thoracic and abdomen-pelvic CT protocols without TCM, respectively. The highest absorbed dose was measured at the breast with 8.58 ± 0.12 mGy in the TCM protocols and 51.52 ± 14.72 mGy in the protocols without TCM during thoracic CT. In the abdomen-pelvic CT, the absorbed dose was highest at the skin with 9.30 ± 1.28mGy and 29.99 ± 2.23 mGy in protocols with and without use of TCM, respectively. In conclusion, the TCM technique results in significant dose reduction; thus it is to be highly recommended in routine thoracic and abdomen-pelvic CT.

AB - This phantom study was designed to compare the radiation dose in thoracic and abdomen-pelvic CT scans with and without use of tube current modulation (TCM). Effective dose (ED) and size-specific dose estimation (SSDE) were calculated with the absorbed doses measured at selective radiosensitive organs using a thermoluminescence dosimeter-100 (TLD-100). When compared to protocols without TCM, the ED and SSDE were reduced significantly with use of TCM for both the thoracic and abdomen-pelvic CT. With use of TCM, the ED was 6.50 ± 0.29 mSv for thoracic and 6.01 ± 0.20 mSv for the abdomen-pelvic CT protocols. However without use of TCM, the ED was 20.07 ± 0.24 mSv and 17.30 ± 0.41 mSv for the thoracic and abdomen-pelvic CT protocols, respectively. The corresponding SSDE was 10.18 ± 0.48 mGy and 11.96 ± 0.27 mGy for the thoracic and abdomen-pelvic CT protocols with TCM, and 31.56 ± 0.43 mGy and 33.23 ± 0.05 mGy for thoracic and abdomen-pelvic CT protocols without TCM, respectively. The highest absorbed dose was measured at the breast with 8.58 ± 0.12 mGy in the TCM protocols and 51.52 ± 14.72 mGy in the protocols without TCM during thoracic CT. In the abdomen-pelvic CT, the absorbed dose was highest at the skin with 9.30 ± 1.28mGy and 29.99 ± 2.23 mGy in protocols with and without use of TCM, respectively. In conclusion, the TCM technique results in significant dose reduction; thus it is to be highly recommended in routine thoracic and abdomen-pelvic CT.

KW - Computed tomography

KW - Dosereduction

KW - Radiation dose

KW - Tube current modulation

UR - http://www.scopus.com/inward/record.url?scp=84922922088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922922088&partnerID=8YFLogxK

M3 - Article

C2 - 25679153

AN - SCOPUS:84922922088

VL - 16

SP - 319

EP - 328

JO - Journal of Applied Clinical Medical Physics

JF - Journal of Applied Clinical Medical Physics

SN - 1526-9914

IS - 1

ER -