Pseudonegative BCL2 protein expression in a t(14;18) translocation positive lymphoma cell line: A need for an alternative BCL2 antibody

Noraidah Masir, Lisa J. Campbell, Margaret Jones, David Y. Mason

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Aim: The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present. Methods: BCL2 expression in the t(14;18) positive cell lines FL18, Karpas-422, SU-DHL-4 and SU-DHL-6, was analysed by Western blotting and by immunohistochemistry using two different antibodies. FISH analysis was performed to confirm the cytogenetic changes in the cell lines and real time quantitative PCR was used to evaluate the BCL2 mRNA level. Sequence analysis of translocated BCL2 was performed on FL18, Karpas-422, SU-DHL-4 and SU-DHL-6 cell lines. Results: In FL18, Karpas-422, and SU-DHL-4, the BCL2 mRNA level correlated with the BCL2 protein expression. In contrast, BCL2 protein was not detected in SU-DHL-6 line using standard anti-BCL2 antibody (BCL2/124), despite the presence of the t(14;18) translocation and high level of mRNA. cDNA sequencing of translocated BCL2 showed three mutations in the SU-DHL-6 cell line, one of which resulted in an amino acid substitution (I48F) in the region recognised by the standard BCL2 antibody, whereas the other two were silent mutations at aa71 and aa72. Interestingly, when BCL2 expression was tested with an alternative antibody, E17, the protein was detected in SU-DHL-6, suggesting that the 'negativity' of SU-DHL-6 line for BCL2 using the standard antibody is spurious. Amino acid changes were found in Karpas-422 (G47D, P59L) and SU-DHL-4 (P59T, S117R) but these did not affect BCL2 detection. Conclusions: This study suggests that some somatic mutations of the translocated BCL2 gene may prevent epitope recognition by BCL2 antibodies, and hence cause false negative expression using the standard antibody. It is recommended that in practice all BCL2 negative cases should routinely be stained with an alternative antibody to prevent false negativity.

Original languageEnglish
Pages (from-to)212-216
Number of pages5
JournalPathology
Volume42
Issue number3
DOIs
Publication statusPublished - Apr 2010

Fingerprint

Proto-Oncogene Proteins c-bcl-2
Lymphoma
Cell Line
Antibodies
Messenger RNA
Genetic Translocation
Mutation
Follicular Lymphoma
Amino Acid Substitution
Cytogenetics
Sequence Analysis
Real-Time Polymerase Chain Reaction
Epitopes
Anti-Idiotypic Antibodies
Complementary DNA
Western Blotting
Immunohistochemistry
Amino Acids

Keywords

  • BCL2 gene mutation
  • BCL2 protein expression
  • MRNA
  • T(14;18) translocation

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Cite this

Pseudonegative BCL2 protein expression in a t(14;18) translocation positive lymphoma cell line : A need for an alternative BCL2 antibody. / Masir, Noraidah; Campbell, Lisa J.; Jones, Margaret; Mason, David Y.

In: Pathology, Vol. 42, No. 3, 04.2010, p. 212-216.

Research output: Contribution to journalArticle

@article{92fc40ae69c748f78ee33110a08ff50a,
title = "Pseudonegative BCL2 protein expression in a t(14;18) translocation positive lymphoma cell line: A need for an alternative BCL2 antibody",
abstract = "Aim: The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present. Methods: BCL2 expression in the t(14;18) positive cell lines FL18, Karpas-422, SU-DHL-4 and SU-DHL-6, was analysed by Western blotting and by immunohistochemistry using two different antibodies. FISH analysis was performed to confirm the cytogenetic changes in the cell lines and real time quantitative PCR was used to evaluate the BCL2 mRNA level. Sequence analysis of translocated BCL2 was performed on FL18, Karpas-422, SU-DHL-4 and SU-DHL-6 cell lines. Results: In FL18, Karpas-422, and SU-DHL-4, the BCL2 mRNA level correlated with the BCL2 protein expression. In contrast, BCL2 protein was not detected in SU-DHL-6 line using standard anti-BCL2 antibody (BCL2/124), despite the presence of the t(14;18) translocation and high level of mRNA. cDNA sequencing of translocated BCL2 showed three mutations in the SU-DHL-6 cell line, one of which resulted in an amino acid substitution (I48F) in the region recognised by the standard BCL2 antibody, whereas the other two were silent mutations at aa71 and aa72. Interestingly, when BCL2 expression was tested with an alternative antibody, E17, the protein was detected in SU-DHL-6, suggesting that the 'negativity' of SU-DHL-6 line for BCL2 using the standard antibody is spurious. Amino acid changes were found in Karpas-422 (G47D, P59L) and SU-DHL-4 (P59T, S117R) but these did not affect BCL2 detection. Conclusions: This study suggests that some somatic mutations of the translocated BCL2 gene may prevent epitope recognition by BCL2 antibodies, and hence cause false negative expression using the standard antibody. It is recommended that in practice all BCL2 negative cases should routinely be stained with an alternative antibody to prevent false negativity.",
keywords = "BCL2 gene mutation, BCL2 protein expression, MRNA, T(14;18) translocation",
author = "Noraidah Masir and Campbell, {Lisa J.} and Margaret Jones and Mason, {David Y.}",
year = "2010",
month = "4",
doi = "10.3109/00313021003631296",
language = "English",
volume = "42",
pages = "212--216",
journal = "Pathology",
issn = "0031-3025",
publisher = "Lippincott Williams and Wilkins",
number = "3",

}

TY - JOUR

T1 - Pseudonegative BCL2 protein expression in a t(14;18) translocation positive lymphoma cell line

T2 - A need for an alternative BCL2 antibody

AU - Masir, Noraidah

AU - Campbell, Lisa J.

AU - Jones, Margaret

AU - Mason, David Y.

PY - 2010/4

Y1 - 2010/4

N2 - Aim: The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present. Methods: BCL2 expression in the t(14;18) positive cell lines FL18, Karpas-422, SU-DHL-4 and SU-DHL-6, was analysed by Western blotting and by immunohistochemistry using two different antibodies. FISH analysis was performed to confirm the cytogenetic changes in the cell lines and real time quantitative PCR was used to evaluate the BCL2 mRNA level. Sequence analysis of translocated BCL2 was performed on FL18, Karpas-422, SU-DHL-4 and SU-DHL-6 cell lines. Results: In FL18, Karpas-422, and SU-DHL-4, the BCL2 mRNA level correlated with the BCL2 protein expression. In contrast, BCL2 protein was not detected in SU-DHL-6 line using standard anti-BCL2 antibody (BCL2/124), despite the presence of the t(14;18) translocation and high level of mRNA. cDNA sequencing of translocated BCL2 showed three mutations in the SU-DHL-6 cell line, one of which resulted in an amino acid substitution (I48F) in the region recognised by the standard BCL2 antibody, whereas the other two were silent mutations at aa71 and aa72. Interestingly, when BCL2 expression was tested with an alternative antibody, E17, the protein was detected in SU-DHL-6, suggesting that the 'negativity' of SU-DHL-6 line for BCL2 using the standard antibody is spurious. Amino acid changes were found in Karpas-422 (G47D, P59L) and SU-DHL-4 (P59T, S117R) but these did not affect BCL2 detection. Conclusions: This study suggests that some somatic mutations of the translocated BCL2 gene may prevent epitope recognition by BCL2 antibodies, and hence cause false negative expression using the standard antibody. It is recommended that in practice all BCL2 negative cases should routinely be stained with an alternative antibody to prevent false negativity.

AB - Aim: The t(14;18)(q32;q21) chromosomal translocation induces BCL2 protein expression in most follicular lymphomas. However, a small number of cases lack BCL2 expression despite carrying the t(14;18)(q32;q21) translocation. This study aims to explore the mechanism accounting for the lack of BCL2 protein expression when the t(14;18) translocation is present. Methods: BCL2 expression in the t(14;18) positive cell lines FL18, Karpas-422, SU-DHL-4 and SU-DHL-6, was analysed by Western blotting and by immunohistochemistry using two different antibodies. FISH analysis was performed to confirm the cytogenetic changes in the cell lines and real time quantitative PCR was used to evaluate the BCL2 mRNA level. Sequence analysis of translocated BCL2 was performed on FL18, Karpas-422, SU-DHL-4 and SU-DHL-6 cell lines. Results: In FL18, Karpas-422, and SU-DHL-4, the BCL2 mRNA level correlated with the BCL2 protein expression. In contrast, BCL2 protein was not detected in SU-DHL-6 line using standard anti-BCL2 antibody (BCL2/124), despite the presence of the t(14;18) translocation and high level of mRNA. cDNA sequencing of translocated BCL2 showed three mutations in the SU-DHL-6 cell line, one of which resulted in an amino acid substitution (I48F) in the region recognised by the standard BCL2 antibody, whereas the other two were silent mutations at aa71 and aa72. Interestingly, when BCL2 expression was tested with an alternative antibody, E17, the protein was detected in SU-DHL-6, suggesting that the 'negativity' of SU-DHL-6 line for BCL2 using the standard antibody is spurious. Amino acid changes were found in Karpas-422 (G47D, P59L) and SU-DHL-4 (P59T, S117R) but these did not affect BCL2 detection. Conclusions: This study suggests that some somatic mutations of the translocated BCL2 gene may prevent epitope recognition by BCL2 antibodies, and hence cause false negative expression using the standard antibody. It is recommended that in practice all BCL2 negative cases should routinely be stained with an alternative antibody to prevent false negativity.

KW - BCL2 gene mutation

KW - BCL2 protein expression

KW - MRNA

KW - T(14;18) translocation

UR - http://www.scopus.com/inward/record.url?scp=77950308072&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950308072&partnerID=8YFLogxK

U2 - 10.3109/00313021003631296

DO - 10.3109/00313021003631296

M3 - Article

C2 - 20350212

AN - SCOPUS:77950308072

VL - 42

SP - 212

EP - 216

JO - Pathology

JF - Pathology

SN - 0031-3025

IS - 3

ER -