Phyllanthin from Phyllanthus amarus inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways

Hemavathy Harikrishnan, Ibrahim Jantan, Md Areeful Haque, Kumolosasi Msi Endang

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Phyllanthin, a lignan from Phyllanthus species, has been reported to possess potent immunosuppressive properties on immune cells and on adaptive and innate immune responses in animal models. Herein, we investigated the inhibitory effects of phyllanthin isolated from Phyllanthus amarus on nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K-Akt signal transducing pathways in LPS-activated U937 cells. The lipopolysaccharide-stimulated excess production of prostaglandin was significantly suppressed by phyllanthin via the mechanisms linked to the modulatory effects of cyclooxygenase 2 protein and gene expression. Phyllanthin also significantly inhibited the release and mRNA expression of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha). Phyllanthin also significantly downregulated the phosphorylation of IκBα, NF-κB (p65), and IKKα/β and suppressed the activation of JNK, ERK, p38MAPK, and Akt in a concentration-dependent manner. Additionally, phyllanthin downregulated the expression of upstream signaling molecules including MyD88 and toll-like receptor 4 that are essential for the activation of NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Based on these observations, phyllanthin may exert their suppressive effects on inflammatory process by mediating the release of inflammatory signaling molecules via the NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Thus, phyllanthin holds a great promise as a potential anti-inflammatory agent to treat various inflammatory diseases.

Original languageEnglish
JournalPhytotherapy Research
DOIs
Publication statusAccepted/In press - 1 Jan 2018

Fingerprint

Phyllanthus
NF-kappa B
Mitogen-Activated Protein Kinases
Phosphatidylinositol 3-Kinases
Down-Regulation
Macrophages
Signal Transduction
Lignans
U937 Cells
Toll-Like Receptor 4
phyllanthin
Adaptive Immunity
Cyclooxygenase 2
Immunosuppressive Agents
Interleukin-1beta
Innate Immunity
Prostaglandins
Lipopolysaccharides
Anti-Inflammatory Agents
Animal Models

Keywords

  • inflammation
  • macrophages
  • MAPKs
  • NF-кB
  • phyllanthin
  • PI3K-Akt

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{c8cd7d78d0b7404c8a38b36a2806707a,
title = "Phyllanthin from Phyllanthus amarus inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways",
abstract = "Phyllanthin, a lignan from Phyllanthus species, has been reported to possess potent immunosuppressive properties on immune cells and on adaptive and innate immune responses in animal models. Herein, we investigated the inhibitory effects of phyllanthin isolated from Phyllanthus amarus on nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K-Akt signal transducing pathways in LPS-activated U937 cells. The lipopolysaccharide-stimulated excess production of prostaglandin was significantly suppressed by phyllanthin via the mechanisms linked to the modulatory effects of cyclooxygenase 2 protein and gene expression. Phyllanthin also significantly inhibited the release and mRNA expression of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha). Phyllanthin also significantly downregulated the phosphorylation of IκBα, NF-κB (p65), and IKKα/β and suppressed the activation of JNK, ERK, p38MAPK, and Akt in a concentration-dependent manner. Additionally, phyllanthin downregulated the expression of upstream signaling molecules including MyD88 and toll-like receptor 4 that are essential for the activation of NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Based on these observations, phyllanthin may exert their suppressive effects on inflammatory process by mediating the release of inflammatory signaling molecules via the NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Thus, phyllanthin holds a great promise as a potential anti-inflammatory agent to treat various inflammatory diseases.",
keywords = "inflammation, macrophages, MAPKs, NF-кB, phyllanthin, PI3K-Akt",
author = "Hemavathy Harikrishnan and Ibrahim Jantan and Haque, {Md Areeful} and Endang, {Kumolosasi Msi}",
year = "2018",
month = "1",
day = "1",
doi = "10.1002/ptr.6190",
language = "English",
journal = "Phytotherapy Research",
issn = "0951-418X",
publisher = "John Wiley and Sons Ltd",

}

TY - JOUR

T1 - Phyllanthin from Phyllanthus amarus inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways

AU - Harikrishnan, Hemavathy

AU - Jantan, Ibrahim

AU - Haque, Md Areeful

AU - Endang, Kumolosasi Msi

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Phyllanthin, a lignan from Phyllanthus species, has been reported to possess potent immunosuppressive properties on immune cells and on adaptive and innate immune responses in animal models. Herein, we investigated the inhibitory effects of phyllanthin isolated from Phyllanthus amarus on nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K-Akt signal transducing pathways in LPS-activated U937 cells. The lipopolysaccharide-stimulated excess production of prostaglandin was significantly suppressed by phyllanthin via the mechanisms linked to the modulatory effects of cyclooxygenase 2 protein and gene expression. Phyllanthin also significantly inhibited the release and mRNA expression of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha). Phyllanthin also significantly downregulated the phosphorylation of IκBα, NF-κB (p65), and IKKα/β and suppressed the activation of JNK, ERK, p38MAPK, and Akt in a concentration-dependent manner. Additionally, phyllanthin downregulated the expression of upstream signaling molecules including MyD88 and toll-like receptor 4 that are essential for the activation of NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Based on these observations, phyllanthin may exert their suppressive effects on inflammatory process by mediating the release of inflammatory signaling molecules via the NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Thus, phyllanthin holds a great promise as a potential anti-inflammatory agent to treat various inflammatory diseases.

AB - Phyllanthin, a lignan from Phyllanthus species, has been reported to possess potent immunosuppressive properties on immune cells and on adaptive and innate immune responses in animal models. Herein, we investigated the inhibitory effects of phyllanthin isolated from Phyllanthus amarus on nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K-Akt signal transducing pathways in LPS-activated U937 cells. The lipopolysaccharide-stimulated excess production of prostaglandin was significantly suppressed by phyllanthin via the mechanisms linked to the modulatory effects of cyclooxygenase 2 protein and gene expression. Phyllanthin also significantly inhibited the release and mRNA expression of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha). Phyllanthin also significantly downregulated the phosphorylation of IκBα, NF-κB (p65), and IKKα/β and suppressed the activation of JNK, ERK, p38MAPK, and Akt in a concentration-dependent manner. Additionally, phyllanthin downregulated the expression of upstream signaling molecules including MyD88 and toll-like receptor 4 that are essential for the activation of NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Based on these observations, phyllanthin may exert their suppressive effects on inflammatory process by mediating the release of inflammatory signaling molecules via the NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Thus, phyllanthin holds a great promise as a potential anti-inflammatory agent to treat various inflammatory diseases.

KW - inflammation

KW - macrophages

KW - MAPKs

KW - NF-кB

KW - phyllanthin

KW - PI3K-Akt

UR - http://www.scopus.com/inward/record.url?scp=85053493632&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053493632&partnerID=8YFLogxK

U2 - 10.1002/ptr.6190

DO - 10.1002/ptr.6190

M3 - Article

JO - Phytotherapy Research

JF - Phytotherapy Research

SN - 0951-418X

ER -