### Abstract

Let f_{n}(z) = z+ Σ_{k=2} ^{n} a_{k}z^{k} be the sequence of partial sums of the analytic function f(z) = z+ Σ_{k=2} ^{∞} a_{k}z^{k} In this paper, we determine sharp lower bounds for R {f(z)=f_{n}(z}); R {f_{n}(z)=f(z}), R {f'(z)=f_{n} ^{'}(z}) and R {f_{n} ^{'}(z)=f'(z}).The efficiency of the main result not only provides the unification of the results discussed in the literature but also generates certain new results.

Original language | English |
---|---|

Pages (from-to) | 362-372 |

Number of pages | 11 |

Journal | Siberian Electronic Mathematical Reports |

Volume | 15 |

DOIs | |

Publication status | Published - 1 Jan 2018 |

### Fingerprint

### Keywords

- Analytic functions
- Generalized Hurwitz-Lerch zeta function
- Hadamard product (or convolution)
- Srivastava-Attiya operator

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Siberian Electronic Mathematical Reports*,

*15*, 362-372. https://doi.org/10.17377/semi.2018.15.033

**Partial sums of a generalized class of analytic functions defined by a generalized Srivastava-Attiya operator.** / Challab, K. A.; Darus, Maslina; Ghanim, F.

Research output: Contribution to journal › Article

*Siberian Electronic Mathematical Reports*, vol. 15, pp. 362-372. https://doi.org/10.17377/semi.2018.15.033

}

TY - JOUR

T1 - Partial sums of a generalized class of analytic functions defined by a generalized Srivastava-Attiya operator

AU - Challab, K. A.

AU - Darus, Maslina

AU - Ghanim, F.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Let fn(z) = z+ Σk=2 n akzk be the sequence of partial sums of the analytic function f(z) = z+ Σk=2 ∞ akzk In this paper, we determine sharp lower bounds for R {f(z)=fn(z}); R {fn(z)=f(z}), R {f'(z)=fn '(z}) and R {fn '(z)=f'(z}).The efficiency of the main result not only provides the unification of the results discussed in the literature but also generates certain new results.

AB - Let fn(z) = z+ Σk=2 n akzk be the sequence of partial sums of the analytic function f(z) = z+ Σk=2 ∞ akzk In this paper, we determine sharp lower bounds for R {f(z)=fn(z}); R {fn(z)=f(z}), R {f'(z)=fn '(z}) and R {fn '(z)=f'(z}).The efficiency of the main result not only provides the unification of the results discussed in the literature but also generates certain new results.

KW - Analytic functions

KW - Generalized Hurwitz-Lerch zeta function

KW - Hadamard product (or convolution)

KW - Srivastava-Attiya operator

UR - http://www.scopus.com/inward/record.url?scp=85046108452&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85046108452&partnerID=8YFLogxK

U2 - 10.17377/semi.2018.15.033

DO - 10.17377/semi.2018.15.033

M3 - Article

AN - SCOPUS:85046108452

VL - 15

SP - 362

EP - 372

JO - Siberian Electronic Mathematical Reports

JF - Siberian Electronic Mathematical Reports

SN - 1813-3304

ER -