Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function

M. Borza, Azmin Sham Rambely, M. Saraj

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

In this this paper, a parametric approach is used to address a fractional functional programming problem with interval coefficients of the type: MinimizeZ(x)=|f(x)|g(x)=| σ k 1[ai, b i]xi+[ai+1, bi+1]| σ k 1[ci, di]xi+[ci+1, di+1] subject to Ax≤b,x≥0.

Original languageEnglish
Title of host publicationAIP Conference Proceedings
PublisherAmerican Institute of Physics Inc.
Pages415-421
Number of pages7
Volume1602
ISBN (Print)9780735412361
DOIs
Publication statusPublished - 2014
Event3rd International Conference on Mathematical Sciences, ICMS 2013 - Kuala Lumpur
Duration: 17 Dec 201319 Dec 2013

Other

Other3rd International Conference on Mathematical Sciences, ICMS 2013
CityKuala Lumpur
Period17/12/1319/12/13

Fingerprint

linear programming
programming
intervals
coefficients

Keywords

  • Absolute-value linear programming
  • Interval coefficients
  • Linear fractional programming
  • Optimization

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Borza, M., Rambely, A. S., & Saraj, M. (2014). Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function. In AIP Conference Proceedings (Vol. 1602, pp. 415-421). American Institute of Physics Inc.. https://doi.org/10.1063/1.4882519

Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function. / Borza, M.; Rambely, Azmin Sham; Saraj, M.

AIP Conference Proceedings. Vol. 1602 American Institute of Physics Inc., 2014. p. 415-421.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Borza, M, Rambely, AS & Saraj, M 2014, Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function. in AIP Conference Proceedings. vol. 1602, American Institute of Physics Inc., pp. 415-421, 3rd International Conference on Mathematical Sciences, ICMS 2013, Kuala Lumpur, 17/12/13. https://doi.org/10.1063/1.4882519
Borza M, Rambely AS, Saraj M. Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function. In AIP Conference Proceedings. Vol. 1602. American Institute of Physics Inc. 2014. p. 415-421 https://doi.org/10.1063/1.4882519
Borza, M. ; Rambely, Azmin Sham ; Saraj, M. / Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function. AIP Conference Proceedings. Vol. 1602 American Institute of Physics Inc., 2014. pp. 415-421
@inproceedings{66941b0c63d74e66b507b70ee92395ec,
title = "Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function",
abstract = "In this this paper, a parametric approach is used to address a fractional functional programming problem with interval coefficients of the type: MinimizeZ(x)=|f(x)|g(x)=| σ k 1[ai, b i]xi+[ai+1, bi+1]| σ k 1[ci, di]xi+[ci+1, di+1] subject to Ax≤b,x≥0.",
keywords = "Absolute-value linear programming, Interval coefficients, Linear fractional programming, Optimization",
author = "M. Borza and Rambely, {Azmin Sham} and M. Saraj",
year = "2014",
doi = "10.1063/1.4882519",
language = "English",
isbn = "9780735412361",
volume = "1602",
pages = "415--421",
booktitle = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",

}

TY - GEN

T1 - Parametric approach for an absolute value linear fractional programming with interval coefficients in the objective function

AU - Borza, M.

AU - Rambely, Azmin Sham

AU - Saraj, M.

PY - 2014

Y1 - 2014

N2 - In this this paper, a parametric approach is used to address a fractional functional programming problem with interval coefficients of the type: MinimizeZ(x)=|f(x)|g(x)=| σ k 1[ai, b i]xi+[ai+1, bi+1]| σ k 1[ci, di]xi+[ci+1, di+1] subject to Ax≤b,x≥0.

AB - In this this paper, a parametric approach is used to address a fractional functional programming problem with interval coefficients of the type: MinimizeZ(x)=|f(x)|g(x)=| σ k 1[ai, b i]xi+[ai+1, bi+1]| σ k 1[ci, di]xi+[ci+1, di+1] subject to Ax≤b,x≥0.

KW - Absolute-value linear programming

KW - Interval coefficients

KW - Linear fractional programming

KW - Optimization

UR - http://www.scopus.com/inward/record.url?scp=84904107467&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84904107467&partnerID=8YFLogxK

U2 - 10.1063/1.4882519

DO - 10.1063/1.4882519

M3 - Conference contribution

AN - SCOPUS:84904107467

SN - 9780735412361

VL - 1602

SP - 415

EP - 421

BT - AIP Conference Proceedings

PB - American Institute of Physics Inc.

ER -