Optimization techniques to enhance the performance of induction motor drives

A review

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Induction motor (IM) drives, specifically the three-phase IMs, are a nonlinear system that are difficult to explain theoretically because of their sudden changes in load or speed conditions. Thus, an advanced controller is needed to enhance IM performance. Among numerous control techniques, fuzzy logic controller (FLC) has increasing popularity in designing complex IM control system due to their simplicity and adaptability. However, the performance of FLCs depends on rules and membership functions (MFs), which are determined by a trial-and-error procedure. The main objective of this paper is to present a critical review on the control and optimization techniques for solving the problems and enhancing the performance of IM drives. A detailed study on the control of variable speed drive, such as scalar and vector, is investigated. The scalar control functions of speed and V/f control are explained in an open- and closed-loop IM drive. The operation, advantages, and limitations of the direct and indirect field-oriented controls of vector control are also demonstrated in controlling the IM drive. A comprehensive review of the different types of optimization techniques for IM drive applications is highlighted. The rigorous review indicates that existing optimization algorithms in conventional controller and FLC can be used for IM drive. However, some problems still exist in achieving the best MF and suitable parameters for IM drive control. The objective of this review also highlights several factors, challenges, and problems of the conventional controller and FLC of the IM drive. Accordingly, the review provides some suggestions on the optimized control for the research and development of future IM drives. All the highlighted insights and recommendations of this review will hopefully lead to increasing efforts toward the development of advanced IM drive controllers for future applications.

Original languageEnglish
JournalRenewable and Sustainable Energy Reviews
DOIs
Publication statusAccepted/In press - 8 Sep 2016

Fingerprint

Induction motors
Controllers
Fuzzy logic
Membership functions
Variable speed drives
Nonlinear systems
Control systems

Keywords

  • Fuzzy logic controller
  • Induction motor drive
  • Optimization algorithms
  • Scalar control
  • Vector control

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment

Cite this

@article{9aadd868c3d04ef1b1adaa3d985136c0,
title = "Optimization techniques to enhance the performance of induction motor drives: A review",
abstract = "Induction motor (IM) drives, specifically the three-phase IMs, are a nonlinear system that are difficult to explain theoretically because of their sudden changes in load or speed conditions. Thus, an advanced controller is needed to enhance IM performance. Among numerous control techniques, fuzzy logic controller (FLC) has increasing popularity in designing complex IM control system due to their simplicity and adaptability. However, the performance of FLCs depends on rules and membership functions (MFs), which are determined by a trial-and-error procedure. The main objective of this paper is to present a critical review on the control and optimization techniques for solving the problems and enhancing the performance of IM drives. A detailed study on the control of variable speed drive, such as scalar and vector, is investigated. The scalar control functions of speed and V/f control are explained in an open- and closed-loop IM drive. The operation, advantages, and limitations of the direct and indirect field-oriented controls of vector control are also demonstrated in controlling the IM drive. A comprehensive review of the different types of optimization techniques for IM drive applications is highlighted. The rigorous review indicates that existing optimization algorithms in conventional controller and FLC can be used for IM drive. However, some problems still exist in achieving the best MF and suitable parameters for IM drive control. The objective of this review also highlights several factors, challenges, and problems of the conventional controller and FLC of the IM drive. Accordingly, the review provides some suggestions on the optimized control for the research and development of future IM drives. All the highlighted insights and recommendations of this review will hopefully lead to increasing efforts toward the development of advanced IM drive controllers for future applications.",
keywords = "Fuzzy logic controller, Induction motor drive, Optimization algorithms, Scalar control, Vector control",
author = "{M A}, Hannan and Ali, {Jamal A.} and Azah Mohamed and Aini Hussain",
year = "2016",
month = "9",
day = "8",
doi = "10.1016/j.rser.2017.05.240",
language = "English",
journal = "Renewable and Sustainable Energy Reviews",
issn = "1364-0321",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Optimization techniques to enhance the performance of induction motor drives

T2 - A review

AU - M A, Hannan

AU - Ali, Jamal A.

AU - Mohamed, Azah

AU - Hussain, Aini

PY - 2016/9/8

Y1 - 2016/9/8

N2 - Induction motor (IM) drives, specifically the three-phase IMs, are a nonlinear system that are difficult to explain theoretically because of their sudden changes in load or speed conditions. Thus, an advanced controller is needed to enhance IM performance. Among numerous control techniques, fuzzy logic controller (FLC) has increasing popularity in designing complex IM control system due to their simplicity and adaptability. However, the performance of FLCs depends on rules and membership functions (MFs), which are determined by a trial-and-error procedure. The main objective of this paper is to present a critical review on the control and optimization techniques for solving the problems and enhancing the performance of IM drives. A detailed study on the control of variable speed drive, such as scalar and vector, is investigated. The scalar control functions of speed and V/f control are explained in an open- and closed-loop IM drive. The operation, advantages, and limitations of the direct and indirect field-oriented controls of vector control are also demonstrated in controlling the IM drive. A comprehensive review of the different types of optimization techniques for IM drive applications is highlighted. The rigorous review indicates that existing optimization algorithms in conventional controller and FLC can be used for IM drive. However, some problems still exist in achieving the best MF and suitable parameters for IM drive control. The objective of this review also highlights several factors, challenges, and problems of the conventional controller and FLC of the IM drive. Accordingly, the review provides some suggestions on the optimized control for the research and development of future IM drives. All the highlighted insights and recommendations of this review will hopefully lead to increasing efforts toward the development of advanced IM drive controllers for future applications.

AB - Induction motor (IM) drives, specifically the three-phase IMs, are a nonlinear system that are difficult to explain theoretically because of their sudden changes in load or speed conditions. Thus, an advanced controller is needed to enhance IM performance. Among numerous control techniques, fuzzy logic controller (FLC) has increasing popularity in designing complex IM control system due to their simplicity and adaptability. However, the performance of FLCs depends on rules and membership functions (MFs), which are determined by a trial-and-error procedure. The main objective of this paper is to present a critical review on the control and optimization techniques for solving the problems and enhancing the performance of IM drives. A detailed study on the control of variable speed drive, such as scalar and vector, is investigated. The scalar control functions of speed and V/f control are explained in an open- and closed-loop IM drive. The operation, advantages, and limitations of the direct and indirect field-oriented controls of vector control are also demonstrated in controlling the IM drive. A comprehensive review of the different types of optimization techniques for IM drive applications is highlighted. The rigorous review indicates that existing optimization algorithms in conventional controller and FLC can be used for IM drive. However, some problems still exist in achieving the best MF and suitable parameters for IM drive control. The objective of this review also highlights several factors, challenges, and problems of the conventional controller and FLC of the IM drive. Accordingly, the review provides some suggestions on the optimized control for the research and development of future IM drives. All the highlighted insights and recommendations of this review will hopefully lead to increasing efforts toward the development of advanced IM drive controllers for future applications.

KW - Fuzzy logic controller

KW - Induction motor drive

KW - Optimization algorithms

KW - Scalar control

KW - Vector control

UR - http://www.scopus.com/inward/record.url?scp=85020260263&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85020260263&partnerID=8YFLogxK

U2 - 10.1016/j.rser.2017.05.240

DO - 10.1016/j.rser.2017.05.240

M3 - Article

JO - Renewable and Sustainable Energy Reviews

JF - Renewable and Sustainable Energy Reviews

SN - 1364-0321

ER -