### Abstract

We introduce generalised differential and integral operators on the class A of analytic functions in the unit disk U := {z ε ℂ : | z | < 1} of the form f(z) = z + Σ^{∞}
_{n=2} 2 a _{n}z^{n}, (z εU), involving k th Hadamard product (convolution) {Equation presented} where {Equation presented}.

Original language | English |
---|---|

Pages (from-to) | 404-411 |

Number of pages | 8 |

Journal | Far East Journal of Mathematical Sciences |

Volume | 33 |

Issue number | 3 |

Publication status | Published - Jun 2009 |

### Fingerprint

### Keywords

- Al-Oboudi operator
- Differential operator
- Hadamard product
- Integral operator
- Noor integral operator
- Ruscheweyh differential operator
- Sǎlǎgean differential operator
- Sǎlǎgean operator

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Far East Journal of Mathematical Sciences*,

*33*(3), 404-411.

**On subclasses of uniformly bazilevic type functions involving generalised differential and integral operators.** / Darus, Maslina; Ibrahim, Rabha W.

Research output: Contribution to journal › Article

*Far East Journal of Mathematical Sciences*, vol. 33, no. 3, pp. 404-411.

}

TY - JOUR

T1 - On subclasses of uniformly bazilevic type functions involving generalised differential and integral operators

AU - Darus, Maslina

AU - Ibrahim, Rabha W.

PY - 2009/6

Y1 - 2009/6

N2 - We introduce generalised differential and integral operators on the class A of analytic functions in the unit disk U := {z ε ℂ : | z | < 1} of the form f(z) = z + Σ∞ n=2 2 a nzn, (z εU), involving k th Hadamard product (convolution) {Equation presented} where {Equation presented}.

AB - We introduce generalised differential and integral operators on the class A of analytic functions in the unit disk U := {z ε ℂ : | z | < 1} of the form f(z) = z + Σ∞ n=2 2 a nzn, (z εU), involving k th Hadamard product (convolution) {Equation presented} where {Equation presented}.

KW - Al-Oboudi operator

KW - Differential operator

KW - Hadamard product

KW - Integral operator

KW - Noor integral operator

KW - Ruscheweyh differential operator

KW - Sǎlǎgean differential operator

KW - Sǎlǎgean operator

UR - http://www.scopus.com/inward/record.url?scp=67650899239&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67650899239&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:67650899239

VL - 33

SP - 404

EP - 411

JO - Far East Journal of Mathematical Sciences

JF - Far East Journal of Mathematical Sciences

SN - 0972-0871

IS - 3

ER -