### Abstract

Let T be a bounded linear operator acting on a complex Hubert space H. In this paper, we show that if A is quasi-class A, X is invertible quasi-class A, X is a Hilbert-Schmidt operator, AX = XB and ∥|A*|∥ ∥|B| ^{-1} then A*X = XB*.

Original language | English |
---|---|

Pages (from-to) | 307-312 |

Number of pages | 6 |

Journal | Tamkang Journal of Mathematics |

Volume | 40 |

Issue number | 3 |

Publication status | Published - Sep 2009 |

### Fingerprint

### Keywords

- Fuglede-putnam theorem
- Quasi-class A

### ASJC Scopus subject areas

- Metals and Alloys
- Materials Science(all)

### Cite this

*Tamkang Journal of Mathematics*,

*40*(3), 307-312.

**On relaxation normality in the fuglede-putnam theorem for a quasi-class a operators.** / Rashid, M. H M; Md. Noorani, Mohd. Salmi.

Research output: Contribution to journal › Article

*Tamkang Journal of Mathematics*, vol. 40, no. 3, pp. 307-312.

}

TY - JOUR

T1 - On relaxation normality in the fuglede-putnam theorem for a quasi-class a operators

AU - Rashid, M. H M

AU - Md. Noorani, Mohd. Salmi

PY - 2009/9

Y1 - 2009/9

N2 - Let T be a bounded linear operator acting on a complex Hubert space H. In this paper, we show that if A is quasi-class A, X is invertible quasi-class A, X is a Hilbert-Schmidt operator, AX = XB and ∥|A*|∥ ∥|B| -1 then A*X = XB*.

AB - Let T be a bounded linear operator acting on a complex Hubert space H. In this paper, we show that if A is quasi-class A, X is invertible quasi-class A, X is a Hilbert-Schmidt operator, AX = XB and ∥|A*|∥ ∥|B| -1 then A*X = XB*.

KW - Fuglede-putnam theorem

KW - Quasi-class A

UR - http://www.scopus.com/inward/record.url?scp=77952705946&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77952705946&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:77952705946

VL - 40

SP - 307

EP - 312

JO - Tamkang Journal of Mathematics

JF - Tamkang Journal of Mathematics

SN - 0049-2930

IS - 3

ER -