### Abstract

For λ > -1 and μ ≥ 0, we consider a liner operator I_{λ}
^{μ} on the class A of analytic functions in the unit disk defined by the convolution (f_{μ}) ^{(-1)} * f (z), where f_{μ} = (1 - μ) z_{2}F_{1}(a, b, c; z) + μz(z_{2} F_{1}(a, b, c; z)) ′, and introduce a certain new subclass of using this operator. Several interesting properties of these classes are obtained.

Original language | English |
---|---|

Article number | 520698 |

Journal | International Journal of Mathematics and Mathematical Sciences |

Volume | 2008 |

DOIs | |

Publication status | Published - 2008 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics (miscellaneous)

### Cite this

**On integral operator defined by convolution involving hybergeometric functions.** / Al-Shaqsi, K.; Darus, Maslina.

Research output: Contribution to journal › Article

}

TY - JOUR

T1 - On integral operator defined by convolution involving hybergeometric functions

AU - Al-Shaqsi, K.

AU - Darus, Maslina

PY - 2008

Y1 - 2008

N2 - For λ > -1 and μ ≥ 0, we consider a liner operator Iλ μ on the class A of analytic functions in the unit disk defined by the convolution (fμ) (-1) * f (z), where fμ = (1 - μ) z2F1(a, b, c; z) + μz(z2 F1(a, b, c; z)) ′, and introduce a certain new subclass of using this operator. Several interesting properties of these classes are obtained.

AB - For λ > -1 and μ ≥ 0, we consider a liner operator Iλ μ on the class A of analytic functions in the unit disk defined by the convolution (fμ) (-1) * f (z), where fμ = (1 - μ) z2F1(a, b, c; z) + μz(z2 F1(a, b, c; z)) ′, and introduce a certain new subclass of using this operator. Several interesting properties of these classes are obtained.

UR - http://www.scopus.com/inward/record.url?scp=43049145872&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=43049145872&partnerID=8YFLogxK

U2 - 10.1155/2008/520698

DO - 10.1155/2008/520698

M3 - Article

VL - 2008

JO - International Journal of Mathematics and Mathematical Sciences

JF - International Journal of Mathematics and Mathematical Sciences

SN - 0161-1712

M1 - 520698

ER -