### Abstract

We introduce new classes MH<inf>κ</inf>k<sup>σ</sup>,s (γ, δ, α;) and M¯H<inf>κ</inf>k<sup>σ</sup>,s (γ, δ, α) of harmonic univalent functions with respect to κ -symmetric points defined by differential operator. We determine a sufficient coefficient condition, representation theorem, and distortion theorem.

Original language | English |
---|---|

Article number | 628972 |

Journal | International Journal of Mathematics and Mathematical Sciences |

Volume | 2014 |

DOIs | |

Publication status | Published - 4 Jul 2014 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics (miscellaneous)

### Cite this

**On harmonic functions defined by differential operator with respect to κ-symmetric points.** / Ali Abubaker, Afaf A.; Darus, Maslina.

Research output: Contribution to journal › Article

*International Journal of Mathematics and Mathematical Sciences*, vol. 2014, 628972. https://doi.org/10.1155/2014/628972

}

TY - JOUR

T1 - On harmonic functions defined by differential operator with respect to κ-symmetric points

AU - Ali Abubaker, Afaf A.

AU - Darus, Maslina

PY - 2014/7/4

Y1 - 2014/7/4

N2 - We introduce new classes MHκkσ,s (γ, δ, α;) and M¯Hκkσ,s (γ, δ, α) of harmonic univalent functions with respect to κ -symmetric points defined by differential operator. We determine a sufficient coefficient condition, representation theorem, and distortion theorem.

AB - We introduce new classes MHκkσ,s (γ, δ, α;) and M¯Hκkσ,s (γ, δ, α) of harmonic univalent functions with respect to κ -symmetric points defined by differential operator. We determine a sufficient coefficient condition, representation theorem, and distortion theorem.

UR - http://www.scopus.com/inward/record.url?scp=84934964853&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84934964853&partnerID=8YFLogxK

U2 - 10.1155/2014/628972

DO - 10.1155/2014/628972

M3 - Article

AN - SCOPUS:84934964853

VL - 2014

JO - International Journal of Mathematics and Mathematical Sciences

JF - International Journal of Mathematics and Mathematical Sciences

SN - 0161-1712

M1 - 628972

ER -