On Fekete-Szegö Problems for Certain Subclasses Defined by q -Derivative

Huda Aldweby, Maslina Darus

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We derive the Fekete-Szegö theorem for new subclasses of analytic functions which are q-analogue of well-known classes introduced before.

Original languageEnglish
Article number7156738
JournalJournal of Function Spaces
Volume2017
DOIs
Publication statusPublished - 2017

Fingerprint

Q-analogue
Analytic function
Derivative
Theorem
Class

ASJC Scopus subject areas

  • Analysis

Cite this

On Fekete-Szegö Problems for Certain Subclasses Defined by q -Derivative. / Aldweby, Huda; Darus, Maslina.

In: Journal of Function Spaces, Vol. 2017, 7156738, 2017.

Research output: Contribution to journalArticle

@article{9342313e5ffe4468ab38f7cef31b0282,
title = "On Fekete-Szeg{\"o} Problems for Certain Subclasses Defined by q -Derivative",
abstract = "We derive the Fekete-Szeg{\"o} theorem for new subclasses of analytic functions which are q-analogue of well-known classes introduced before.",
author = "Huda Aldweby and Maslina Darus",
year = "2017",
doi = "10.1155/2017/7156738",
language = "English",
volume = "2017",
journal = "Journal of Function Spaces",
issn = "2314-8896",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - On Fekete-Szegö Problems for Certain Subclasses Defined by q -Derivative

AU - Aldweby, Huda

AU - Darus, Maslina

PY - 2017

Y1 - 2017

N2 - We derive the Fekete-Szegö theorem for new subclasses of analytic functions which are q-analogue of well-known classes introduced before.

AB - We derive the Fekete-Szegö theorem for new subclasses of analytic functions which are q-analogue of well-known classes introduced before.

UR - http://www.scopus.com/inward/record.url?scp=85029674859&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85029674859&partnerID=8YFLogxK

U2 - 10.1155/2017/7156738

DO - 10.1155/2017/7156738

M3 - Article

VL - 2017

JO - Journal of Function Spaces

JF - Journal of Function Spaces

SN - 2314-8896

M1 - 7156738

ER -