### Abstract

A new certain differential operator T _{α,β,δ,λ}
^{m}f(z) and a subclass S _{m,w}(α,β,γ,δ,λ) are introduced for functions of the form f(z) = (z-w)-_{n=2}
^{∞} a _{n} (z-w) n which are univalent in the unit disc U = {z∈:|z|<1 }. In this paper, we obtain coefficient inequalities, distortion theorem, closure theorems, and class preserving integral operators of functions belonging to the class S_{m,w}(α,β,γ,δ,λ).

Original language | English |
---|---|

Article number | 312387 |

Journal | Journal of Applied Mathematics |

Volume | 2013 |

DOIs | |

Publication status | Published - 2013 |

### Fingerprint

### ASJC Scopus subject areas

- Applied Mathematics

### Cite this

*Journal of Applied Mathematics*,

*2013*, [312387]. https://doi.org/10.1155/2013/312387

**On certain subclass of analytic functions with fixed point.** / Al-Hawary, T.; Frasin, B. A.; Darus, Maslina.

Research output: Contribution to journal › Article

*Journal of Applied Mathematics*, vol. 2013, 312387. https://doi.org/10.1155/2013/312387

}

TY - JOUR

T1 - On certain subclass of analytic functions with fixed point

AU - Al-Hawary, T.

AU - Frasin, B. A.

AU - Darus, Maslina

PY - 2013

Y1 - 2013

N2 - A new certain differential operator T α,β,δ,λ mf(z) and a subclass S m,w(α,β,γ,δ,λ) are introduced for functions of the form f(z) = (z-w)-n=2 ∞ a n (z-w) n which are univalent in the unit disc U = {z∈:|z|<1 }. In this paper, we obtain coefficient inequalities, distortion theorem, closure theorems, and class preserving integral operators of functions belonging to the class Sm,w(α,β,γ,δ,λ).

AB - A new certain differential operator T α,β,δ,λ mf(z) and a subclass S m,w(α,β,γ,δ,λ) are introduced for functions of the form f(z) = (z-w)-n=2 ∞ a n (z-w) n which are univalent in the unit disc U = {z∈:|z|<1 }. In this paper, we obtain coefficient inequalities, distortion theorem, closure theorems, and class preserving integral operators of functions belonging to the class Sm,w(α,β,γ,δ,λ).

UR - http://www.scopus.com/inward/record.url?scp=84874826101&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84874826101&partnerID=8YFLogxK

U2 - 10.1155/2013/312387

DO - 10.1155/2013/312387

M3 - Article

VL - 2013

JO - Journal of Applied Mathematics

JF - Journal of Applied Mathematics

SN - 1110-757X

M1 - 312387

ER -