Notes on zygmund functions

H. Akhadkulov, M. S. Noorani, A. B. Saaban, S. Akhatkulov

Research output: Contribution to journalArticle

Abstract

In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if γ = 1. Moreover, these functions are differentiable if γ > 1. These results extend the results in literatures [4], [5].

Original languageEnglish
Pages (from-to)481-488
Number of pages8
JournalInternational Journal of Pure and Applied Mathematics
Volume112
Issue number3
DOIs
Publication statusPublished - 2017

Fingerprint

Modulus of Continuity
Differentiable
Continuous Function
Dependent
Class

Keywords

  • Differentiability
  • Modulus of continuity
  • Zygmund functions

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Notes on zygmund functions. / Akhadkulov, H.; Noorani, M. S.; Saaban, A. B.; Akhatkulov, S.

In: International Journal of Pure and Applied Mathematics, Vol. 112, No. 3, 2017, p. 481-488.

Research output: Contribution to journalArticle

Akhadkulov, H. ; Noorani, M. S. ; Saaban, A. B. ; Akhatkulov, S. / Notes on zygmund functions. In: International Journal of Pure and Applied Mathematics. 2017 ; Vol. 112, No. 3. pp. 481-488.
@article{b7461ac0d04e4aed9be501488148c332,
title = "Notes on zygmund functions",
abstract = "In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if γ = 1. Moreover, these functions are differentiable if γ > 1. These results extend the results in literatures [4], [5].",
keywords = "Differentiability, Modulus of continuity, Zygmund functions",
author = "H. Akhadkulov and Noorani, {M. S.} and Saaban, {A. B.} and S. Akhatkulov",
year = "2017",
doi = "10.12732/ijpam.v112i3.3",
language = "English",
volume = "112",
pages = "481--488",
journal = "International Journal of Pure and Applied Mathematics",
issn = "1311-8080",
publisher = "Academic Publications Ltd.",
number = "3",

}

TY - JOUR

T1 - Notes on zygmund functions

AU - Akhadkulov, H.

AU - Noorani, M. S.

AU - Saaban, A. B.

AU - Akhatkulov, S.

PY - 2017

Y1 - 2017

N2 - In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if γ = 1. Moreover, these functions are differentiable if γ > 1. These results extend the results in literatures [4], [5].

AB - In this paper we study a class of continuous functions satisfying a certain Zyg-mund condition dependent on a parameter γ > 0. It shown that the modulus of continuity of such functions is O(δ(log 1/δ)1-γ) if ∈ (0, 1) and O(δ(log log 1/δ )) if γ = 1. Moreover, these functions are differentiable if γ > 1. These results extend the results in literatures [4], [5].

KW - Differentiability

KW - Modulus of continuity

KW - Zygmund functions

UR - http://www.scopus.com/inward/record.url?scp=85014582739&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85014582739&partnerID=8YFLogxK

U2 - 10.12732/ijpam.v112i3.3

DO - 10.12732/ijpam.v112i3.3

M3 - Article

VL - 112

SP - 481

EP - 488

JO - International Journal of Pure and Applied Mathematics

JF - International Journal of Pure and Applied Mathematics

SN - 1311-8080

IS - 3

ER -