Mesoscale model simulation of low level equatorial winds over Borneo during the haze episode of September 1997

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

The large-scale vegetation fires instigated by the local farmers during the dry period of the major El Niño event in 1997 can be considered as one of the worst environmental disasters that have occurred in southeast Asia in recent history. This study investigated the local meteorology characteristics of an equatorial environment within a domain that includes the northwestern part of Borneo from the 17 to 27 September 1997 during the height of the haze episode by utilizing a limited area three-dimensional meteorological and dispersion model, The Air Pollution Model (TAPM). Daily land and sea breeze conditions near the northwestern coast of Borneo in the state of Sarawak, Malaysia were predicted with moderate success by the index of agreement of less than one between the observed and simulated values for wind speed and a slight overprediction of 2.3 of the skill indicator that evaluates the standard deviation to the observed values. The innermost domain of study comprises an area of 24,193 km2, from approximately 109°E to 111°E, and from 1°N to 2.3°N, which includes a part of the South China Sea. Tracer analysis of air particles that were sourced in the state of Sarawak on the island of Borneo verified the existence of the landward and shoreward movements of the air during the simulation of the low level wind field. Polluted air particles were transported seawards during night-time, and landwards during daytime, highlighting the recirculation features of aged and newer air particles during the length of eleven days throughout the model simulation. Near calm conditions at low levels were simulated by the trajectory analysis from midnight to mid-day on the 22 of September 1997. Low-level turbulence within the planetary boundary layer in terms of the total kinetic energy was weak, congruent with the weak strength of low level winds that reduced the ability of the air to transport the pollutants. Statistical evaluation showed that parameters such as the systematic RMSE and unsystematic RMSE between the observed and simulated values indicated the modest skill of the model in simulating the low level winds. Otherwise, the equatorial meteorological parameters such as wind speed and temperature were successfully simulated by the model with comparatively high correlation coefficients, lower RMSEs and moderately high indices of agreement with observed values.

Original languageEnglish
Pages (from-to)295-307
Number of pages13
JournalJournal of Earth System Science
Volume118
Issue number4
DOIs
Publication statusPublished - Aug 2009

Fingerprint

haze
air
simulation
wind velocity
land breeze
sea breeze
wind field
meteorology
kinetic energy
disaster
atmospheric pollution
boundary layer
turbulence
tracer
trajectory
pollutant
vegetation
coast
history
particle

Keywords

  • Biomass burning
  • Equatorial region
  • Haze
  • Low-level meteorological parameters
  • Sarawak
  • Southeast Asia

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Cite this

@article{969b9cad62d04e618c65c5fcd1bfc20e,
title = "Mesoscale model simulation of low level equatorial winds over Borneo during the haze episode of September 1997",
abstract = "The large-scale vegetation fires instigated by the local farmers during the dry period of the major El Ni{\~n}o event in 1997 can be considered as one of the worst environmental disasters that have occurred in southeast Asia in recent history. This study investigated the local meteorology characteristics of an equatorial environment within a domain that includes the northwestern part of Borneo from the 17 to 27 September 1997 during the height of the haze episode by utilizing a limited area three-dimensional meteorological and dispersion model, The Air Pollution Model (TAPM). Daily land and sea breeze conditions near the northwestern coast of Borneo in the state of Sarawak, Malaysia were predicted with moderate success by the index of agreement of less than one between the observed and simulated values for wind speed and a slight overprediction of 2.3 of the skill indicator that evaluates the standard deviation to the observed values. The innermost domain of study comprises an area of 24,193 km2, from approximately 109°E to 111°E, and from 1°N to 2.3°N, which includes a part of the South China Sea. Tracer analysis of air particles that were sourced in the state of Sarawak on the island of Borneo verified the existence of the landward and shoreward movements of the air during the simulation of the low level wind field. Polluted air particles were transported seawards during night-time, and landwards during daytime, highlighting the recirculation features of aged and newer air particles during the length of eleven days throughout the model simulation. Near calm conditions at low levels were simulated by the trajectory analysis from midnight to mid-day on the 22 of September 1997. Low-level turbulence within the planetary boundary layer in terms of the total kinetic energy was weak, congruent with the weak strength of low level winds that reduced the ability of the air to transport the pollutants. Statistical evaluation showed that parameters such as the systematic RMSE and unsystematic RMSE between the observed and simulated values indicated the modest skill of the model in simulating the low level winds. Otherwise, the equatorial meteorological parameters such as wind speed and temperature were successfully simulated by the model with comparatively high correlation coefficients, lower RMSEs and moderately high indices of agreement with observed values.",
keywords = "Biomass burning, Equatorial region, Haze, Low-level meteorological parameters, Sarawak, Southeast Asia",
author = "Mastura Mahmud",
year = "2009",
month = "8",
doi = "10.1007/s12040-009-0032-7",
language = "English",
volume = "118",
pages = "295--307",
journal = "Proceedings of the Indian Academy of Sciences, Earth and Planetary Sciences",
issn = "2347-4327",
publisher = "Indian Academy of Sciences",
number = "4",

}

TY - JOUR

T1 - Mesoscale model simulation of low level equatorial winds over Borneo during the haze episode of September 1997

AU - Mahmud, Mastura

PY - 2009/8

Y1 - 2009/8

N2 - The large-scale vegetation fires instigated by the local farmers during the dry period of the major El Niño event in 1997 can be considered as one of the worst environmental disasters that have occurred in southeast Asia in recent history. This study investigated the local meteorology characteristics of an equatorial environment within a domain that includes the northwestern part of Borneo from the 17 to 27 September 1997 during the height of the haze episode by utilizing a limited area three-dimensional meteorological and dispersion model, The Air Pollution Model (TAPM). Daily land and sea breeze conditions near the northwestern coast of Borneo in the state of Sarawak, Malaysia were predicted with moderate success by the index of agreement of less than one between the observed and simulated values for wind speed and a slight overprediction of 2.3 of the skill indicator that evaluates the standard deviation to the observed values. The innermost domain of study comprises an area of 24,193 km2, from approximately 109°E to 111°E, and from 1°N to 2.3°N, which includes a part of the South China Sea. Tracer analysis of air particles that were sourced in the state of Sarawak on the island of Borneo verified the existence of the landward and shoreward movements of the air during the simulation of the low level wind field. Polluted air particles were transported seawards during night-time, and landwards during daytime, highlighting the recirculation features of aged and newer air particles during the length of eleven days throughout the model simulation. Near calm conditions at low levels were simulated by the trajectory analysis from midnight to mid-day on the 22 of September 1997. Low-level turbulence within the planetary boundary layer in terms of the total kinetic energy was weak, congruent with the weak strength of low level winds that reduced the ability of the air to transport the pollutants. Statistical evaluation showed that parameters such as the systematic RMSE and unsystematic RMSE between the observed and simulated values indicated the modest skill of the model in simulating the low level winds. Otherwise, the equatorial meteorological parameters such as wind speed and temperature were successfully simulated by the model with comparatively high correlation coefficients, lower RMSEs and moderately high indices of agreement with observed values.

AB - The large-scale vegetation fires instigated by the local farmers during the dry period of the major El Niño event in 1997 can be considered as one of the worst environmental disasters that have occurred in southeast Asia in recent history. This study investigated the local meteorology characteristics of an equatorial environment within a domain that includes the northwestern part of Borneo from the 17 to 27 September 1997 during the height of the haze episode by utilizing a limited area three-dimensional meteorological and dispersion model, The Air Pollution Model (TAPM). Daily land and sea breeze conditions near the northwestern coast of Borneo in the state of Sarawak, Malaysia were predicted with moderate success by the index of agreement of less than one between the observed and simulated values for wind speed and a slight overprediction of 2.3 of the skill indicator that evaluates the standard deviation to the observed values. The innermost domain of study comprises an area of 24,193 km2, from approximately 109°E to 111°E, and from 1°N to 2.3°N, which includes a part of the South China Sea. Tracer analysis of air particles that were sourced in the state of Sarawak on the island of Borneo verified the existence of the landward and shoreward movements of the air during the simulation of the low level wind field. Polluted air particles were transported seawards during night-time, and landwards during daytime, highlighting the recirculation features of aged and newer air particles during the length of eleven days throughout the model simulation. Near calm conditions at low levels were simulated by the trajectory analysis from midnight to mid-day on the 22 of September 1997. Low-level turbulence within the planetary boundary layer in terms of the total kinetic energy was weak, congruent with the weak strength of low level winds that reduced the ability of the air to transport the pollutants. Statistical evaluation showed that parameters such as the systematic RMSE and unsystematic RMSE between the observed and simulated values indicated the modest skill of the model in simulating the low level winds. Otherwise, the equatorial meteorological parameters such as wind speed and temperature were successfully simulated by the model with comparatively high correlation coefficients, lower RMSEs and moderately high indices of agreement with observed values.

KW - Biomass burning

KW - Equatorial region

KW - Haze

KW - Low-level meteorological parameters

KW - Sarawak

KW - Southeast Asia

UR - http://www.scopus.com/inward/record.url?scp=70349799232&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349799232&partnerID=8YFLogxK

U2 - 10.1007/s12040-009-0032-7

DO - 10.1007/s12040-009-0032-7

M3 - Article

AN - SCOPUS:70349799232

VL - 118

SP - 295

EP - 307

JO - Proceedings of the Indian Academy of Sciences, Earth and Planetary Sciences

JF - Proceedings of the Indian Academy of Sciences, Earth and Planetary Sciences

SN - 2347-4327

IS - 4

ER -