Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration

Fredrik Forsberg, Farizah Saharil, Göran Stemme, Niclas Roxhed, Wouter Van Der Wijngaart, Tommy Haraldsson, Frank Niklaus

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

We demonstrate, for the first time, the use of off stoichiometry thiolene-epoxy, OSTE(+) for adhesive wafer bonding. The dual cure system, with an initial UV-curing step followed by a second thermal cure, allows for high bond strength and potentially high quality material interfaces. We show that cured OSTE(+) is easily removed in oxygen plasma and that the characteristics of OSTE(+) make it a potential candidate for use in heterogeneous 3D MEMS integration. Furthermore, we show how the bond energies of wafers bonded with OSTE(+) adhesive compares with the bond energies of wafers bonded with Cyclotene 3022-46 (BCB) and mr-I 9150XP nanoimprint resist.

Original languageEnglish
Title of host publicationProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Pages343-346
Number of pages4
DOIs
Publication statusPublished - 2013
Externally publishedYes
EventIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013 - Taipei
Duration: 20 Jan 201324 Jan 2013

Other

OtherIEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013
CityTaipei
Period20/1/1324/1/13

Fingerprint

Wafer bonding
adhesives
microelectromechanical systems
MEMS
Adhesives
wafers
Stoichiometry
Curing
oxygen plasma
Oxygen
curing
Plasmas
Temperature
stoichiometry
energy
cyclotene
Hot Temperature

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Condensed Matter Physics
  • Electronic, Optical and Magnetic Materials

Cite this

Forsberg, F., Saharil, F., Stemme, G., Roxhed, N., Van Der Wijngaart, W., Haraldsson, T., & Niklaus, F. (2013). Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 343-346). [6474248] https://doi.org/10.1109/MEMSYS.2013.6474248

Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration. / Forsberg, Fredrik; Saharil, Farizah; Stemme, Göran; Roxhed, Niclas; Van Der Wijngaart, Wouter; Haraldsson, Tommy; Niklaus, Frank.

Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2013. p. 343-346 6474248.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Forsberg, F, Saharil, F, Stemme, G, Roxhed, N, Van Der Wijngaart, W, Haraldsson, T & Niklaus, F 2013, Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration. in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)., 6474248, pp. 343-346, IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013, Taipei, 20/1/13. https://doi.org/10.1109/MEMSYS.2013.6474248
Forsberg F, Saharil F, Stemme G, Roxhed N, Van Der Wijngaart W, Haraldsson T et al. Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2013. p. 343-346. 6474248 https://doi.org/10.1109/MEMSYS.2013.6474248
Forsberg, Fredrik ; Saharil, Farizah ; Stemme, Göran ; Roxhed, Niclas ; Van Der Wijngaart, Wouter ; Haraldsson, Tommy ; Niklaus, Frank. / Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2013. pp. 343-346
@inproceedings{b6f319077c054cabade09ee869df3716,
title = "Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration",
abstract = "We demonstrate, for the first time, the use of off stoichiometry thiolene-epoxy, OSTE(+) for adhesive wafer bonding. The dual cure system, with an initial UV-curing step followed by a second thermal cure, allows for high bond strength and potentially high quality material interfaces. We show that cured OSTE(+) is easily removed in oxygen plasma and that the characteristics of OSTE(+) make it a potential candidate for use in heterogeneous 3D MEMS integration. Furthermore, we show how the bond energies of wafers bonded with OSTE(+) adhesive compares with the bond energies of wafers bonded with Cyclotene 3022-46 (BCB) and mr-I 9150XP nanoimprint resist.",
author = "Fredrik Forsberg and Farizah Saharil and G{\"o}ran Stemme and Niclas Roxhed and {Van Der Wijngaart}, Wouter and Tommy Haraldsson and Frank Niklaus",
year = "2013",
doi = "10.1109/MEMSYS.2013.6474248",
language = "English",
isbn = "9781467356558",
pages = "343--346",
booktitle = "Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)",

}

TY - GEN

T1 - Low temperature adhesive wafer bonding using OSTE(+) for heterogeneous 3D MEMS integration

AU - Forsberg, Fredrik

AU - Saharil, Farizah

AU - Stemme, Göran

AU - Roxhed, Niclas

AU - Van Der Wijngaart, Wouter

AU - Haraldsson, Tommy

AU - Niklaus, Frank

PY - 2013

Y1 - 2013

N2 - We demonstrate, for the first time, the use of off stoichiometry thiolene-epoxy, OSTE(+) for adhesive wafer bonding. The dual cure system, with an initial UV-curing step followed by a second thermal cure, allows for high bond strength and potentially high quality material interfaces. We show that cured OSTE(+) is easily removed in oxygen plasma and that the characteristics of OSTE(+) make it a potential candidate for use in heterogeneous 3D MEMS integration. Furthermore, we show how the bond energies of wafers bonded with OSTE(+) adhesive compares with the bond energies of wafers bonded with Cyclotene 3022-46 (BCB) and mr-I 9150XP nanoimprint resist.

AB - We demonstrate, for the first time, the use of off stoichiometry thiolene-epoxy, OSTE(+) for adhesive wafer bonding. The dual cure system, with an initial UV-curing step followed by a second thermal cure, allows for high bond strength and potentially high quality material interfaces. We show that cured OSTE(+) is easily removed in oxygen plasma and that the characteristics of OSTE(+) make it a potential candidate for use in heterogeneous 3D MEMS integration. Furthermore, we show how the bond energies of wafers bonded with OSTE(+) adhesive compares with the bond energies of wafers bonded with Cyclotene 3022-46 (BCB) and mr-I 9150XP nanoimprint resist.

UR - http://www.scopus.com/inward/record.url?scp=84875443694&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84875443694&partnerID=8YFLogxK

U2 - 10.1109/MEMSYS.2013.6474248

DO - 10.1109/MEMSYS.2013.6474248

M3 - Conference contribution

AN - SCOPUS:84875443694

SN - 9781467356558

SP - 343

EP - 346

BT - Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)

ER -