Hardware implementation of a genetic algorithm based canonical singed digit multiplierless fast fourier transform processor for multiband orthogonal frequency division multiplexing ultra wideband applications

Mahmud Benhamid, Masuri Bin Othman

    Research output: Contribution to journalArticle

    3 Citations (Scopus)

    Abstract

    Problem statement: Ultra Wide Band (UWB) technology has attracted many researchers' attention due to its advantages and its great potential for future applications. The physical layer standard of Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB system is defined by ECMA International. In this standard, the data sampling rate from the analog-to-digital converter to the physical layer is up to 528 M sample sec-1. Therefore, it is a challenge to realize the physical layer especially the components with high computational complexity in Very Large Scale Integration (VLSI) implementation. Fast Fourier Transform (FFT) block which plays an important role in MB-OFDM system is one of these components. Furthermore, the execution time of this module is only 312.5 ns. Therefore, if employing the traditional approach, high power consumption and hardware cost of the processor will be needed to meet the strict specifications of the UWB system. The objective of this study was to design an Application Specific Integrated Circuit (ASIC) FFT processor for this system. The specification was defined from the system analysis and literature research. Approach: Based on the algorithm and architecture analysis, a novel Genetic Algorithm (GA) based Canonical Signed Digit (CSD) Multiplier less 128-point FFT processor and its inverse (IFFT) for MB-OFDM UWB systems had been proposed. The proposed pipelined architecture was based on the modified Radix-22 algorithm that had same number of multipliers as that of the conventional Radix-22. However, the multiplication complexity and the ROM memory needed for storing twiddle factors coefficients could be eliminated by replacing the conventional complex multipliers with a newly proposed GA optimized CSD constant multipliers. The design had been coded in Verilog HDL and targeted Xilinx Virtex-II FPGA series. It was fully implemented and tested on real hardware using Virtex-II FG456 prototype board and logic analyzer. Results: From the synthesis reports, the proposed GA optimized CSD constant complex multiplier achieved 79 and 50% equivalent gates and latency efficiency when compared to the conventional complex multiplier. Conclusion: As a conclusion, we successfully implemented 128-points FFT/IFFT processor with the proposed architecture that can meet the requirement of MB-OFDM UWB system with higher throughput and less area compared to conventional architecture.

    Original languageEnglish
    Pages (from-to)241-250
    Number of pages10
    JournalJournal of Mathematics and Statistics
    Volume5
    Issue number4
    DOIs
    Publication statusPublished - 2009

    Fingerprint

    Hardware Implementation
    Fast Fourier transform
    Orthogonal Frequency Division multiplexing (OFDM)
    Digit
    Genetic Algorithm
    Multiplier
    Signed
    Hardware
    Specification
    Analog-to-digital Converter
    Integrated Circuits
    Systems Analysis
    High Power
    Execution Time
    Field Programmable Gate Array
    High Throughput
    Power Consumption
    Latency
    Multiplication
    Computational Complexity

    Keywords

    • CSD
    • FFT
    • GA
    • OFDM
    • UWB
    • VLSI

    ASJC Scopus subject areas

    • Mathematics(all)
    • Statistics and Probability

    Cite this

    @article{03cbf269d92541e7be2366ef3f218e2b,
    title = "Hardware implementation of a genetic algorithm based canonical singed digit multiplierless fast fourier transform processor for multiband orthogonal frequency division multiplexing ultra wideband applications",
    abstract = "Problem statement: Ultra Wide Band (UWB) technology has attracted many researchers' attention due to its advantages and its great potential for future applications. The physical layer standard of Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB system is defined by ECMA International. In this standard, the data sampling rate from the analog-to-digital converter to the physical layer is up to 528 M sample sec-1. Therefore, it is a challenge to realize the physical layer especially the components with high computational complexity in Very Large Scale Integration (VLSI) implementation. Fast Fourier Transform (FFT) block which plays an important role in MB-OFDM system is one of these components. Furthermore, the execution time of this module is only 312.5 ns. Therefore, if employing the traditional approach, high power consumption and hardware cost of the processor will be needed to meet the strict specifications of the UWB system. The objective of this study was to design an Application Specific Integrated Circuit (ASIC) FFT processor for this system. The specification was defined from the system analysis and literature research. Approach: Based on the algorithm and architecture analysis, a novel Genetic Algorithm (GA) based Canonical Signed Digit (CSD) Multiplier less 128-point FFT processor and its inverse (IFFT) for MB-OFDM UWB systems had been proposed. The proposed pipelined architecture was based on the modified Radix-22 algorithm that had same number of multipliers as that of the conventional Radix-22. However, the multiplication complexity and the ROM memory needed for storing twiddle factors coefficients could be eliminated by replacing the conventional complex multipliers with a newly proposed GA optimized CSD constant multipliers. The design had been coded in Verilog HDL and targeted Xilinx Virtex-II FPGA series. It was fully implemented and tested on real hardware using Virtex-II FG456 prototype board and logic analyzer. Results: From the synthesis reports, the proposed GA optimized CSD constant complex multiplier achieved 79 and 50{\%} equivalent gates and latency efficiency when compared to the conventional complex multiplier. Conclusion: As a conclusion, we successfully implemented 128-points FFT/IFFT processor with the proposed architecture that can meet the requirement of MB-OFDM UWB system with higher throughput and less area compared to conventional architecture.",
    keywords = "CSD, FFT, GA, OFDM, UWB, VLSI",
    author = "Mahmud Benhamid and Othman, {Masuri Bin}",
    year = "2009",
    doi = "10.3844/jmssp.2009.241.250",
    language = "English",
    volume = "5",
    pages = "241--250",
    journal = "Journal of Mathematics and Statistics",
    issn = "1549-3644",
    publisher = "Science Publications",
    number = "4",

    }

    TY - JOUR

    T1 - Hardware implementation of a genetic algorithm based canonical singed digit multiplierless fast fourier transform processor for multiband orthogonal frequency division multiplexing ultra wideband applications

    AU - Benhamid, Mahmud

    AU - Othman, Masuri Bin

    PY - 2009

    Y1 - 2009

    N2 - Problem statement: Ultra Wide Band (UWB) technology has attracted many researchers' attention due to its advantages and its great potential for future applications. The physical layer standard of Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB system is defined by ECMA International. In this standard, the data sampling rate from the analog-to-digital converter to the physical layer is up to 528 M sample sec-1. Therefore, it is a challenge to realize the physical layer especially the components with high computational complexity in Very Large Scale Integration (VLSI) implementation. Fast Fourier Transform (FFT) block which plays an important role in MB-OFDM system is one of these components. Furthermore, the execution time of this module is only 312.5 ns. Therefore, if employing the traditional approach, high power consumption and hardware cost of the processor will be needed to meet the strict specifications of the UWB system. The objective of this study was to design an Application Specific Integrated Circuit (ASIC) FFT processor for this system. The specification was defined from the system analysis and literature research. Approach: Based on the algorithm and architecture analysis, a novel Genetic Algorithm (GA) based Canonical Signed Digit (CSD) Multiplier less 128-point FFT processor and its inverse (IFFT) for MB-OFDM UWB systems had been proposed. The proposed pipelined architecture was based on the modified Radix-22 algorithm that had same number of multipliers as that of the conventional Radix-22. However, the multiplication complexity and the ROM memory needed for storing twiddle factors coefficients could be eliminated by replacing the conventional complex multipliers with a newly proposed GA optimized CSD constant multipliers. The design had been coded in Verilog HDL and targeted Xilinx Virtex-II FPGA series. It was fully implemented and tested on real hardware using Virtex-II FG456 prototype board and logic analyzer. Results: From the synthesis reports, the proposed GA optimized CSD constant complex multiplier achieved 79 and 50% equivalent gates and latency efficiency when compared to the conventional complex multiplier. Conclusion: As a conclusion, we successfully implemented 128-points FFT/IFFT processor with the proposed architecture that can meet the requirement of MB-OFDM UWB system with higher throughput and less area compared to conventional architecture.

    AB - Problem statement: Ultra Wide Band (UWB) technology has attracted many researchers' attention due to its advantages and its great potential for future applications. The physical layer standard of Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM) UWB system is defined by ECMA International. In this standard, the data sampling rate from the analog-to-digital converter to the physical layer is up to 528 M sample sec-1. Therefore, it is a challenge to realize the physical layer especially the components with high computational complexity in Very Large Scale Integration (VLSI) implementation. Fast Fourier Transform (FFT) block which plays an important role in MB-OFDM system is one of these components. Furthermore, the execution time of this module is only 312.5 ns. Therefore, if employing the traditional approach, high power consumption and hardware cost of the processor will be needed to meet the strict specifications of the UWB system. The objective of this study was to design an Application Specific Integrated Circuit (ASIC) FFT processor for this system. The specification was defined from the system analysis and literature research. Approach: Based on the algorithm and architecture analysis, a novel Genetic Algorithm (GA) based Canonical Signed Digit (CSD) Multiplier less 128-point FFT processor and its inverse (IFFT) for MB-OFDM UWB systems had been proposed. The proposed pipelined architecture was based on the modified Radix-22 algorithm that had same number of multipliers as that of the conventional Radix-22. However, the multiplication complexity and the ROM memory needed for storing twiddle factors coefficients could be eliminated by replacing the conventional complex multipliers with a newly proposed GA optimized CSD constant multipliers. The design had been coded in Verilog HDL and targeted Xilinx Virtex-II FPGA series. It was fully implemented and tested on real hardware using Virtex-II FG456 prototype board and logic analyzer. Results: From the synthesis reports, the proposed GA optimized CSD constant complex multiplier achieved 79 and 50% equivalent gates and latency efficiency when compared to the conventional complex multiplier. Conclusion: As a conclusion, we successfully implemented 128-points FFT/IFFT processor with the proposed architecture that can meet the requirement of MB-OFDM UWB system with higher throughput and less area compared to conventional architecture.

    KW - CSD

    KW - FFT

    KW - GA

    KW - OFDM

    KW - UWB

    KW - VLSI

    UR - http://www.scopus.com/inward/record.url?scp=70350045149&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=70350045149&partnerID=8YFLogxK

    U2 - 10.3844/jmssp.2009.241.250

    DO - 10.3844/jmssp.2009.241.250

    M3 - Article

    AN - SCOPUS:70350045149

    VL - 5

    SP - 241

    EP - 250

    JO - Journal of Mathematics and Statistics

    JF - Journal of Mathematics and Statistics

    SN - 1549-3644

    IS - 4

    ER -