Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime

Wan Nur Ain Mat Nasir, Wan Juliana Wan Ahmad, Nor Lailatul Wahidah Musa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Elevated atmospheric CO2 has significant effects on plant growth depending on the species and the interaction between treatments given. In other words, the impacts vary among species, depending on differences in photosynthetic pathways, intrinsic growth rates and other properties. In this research we studied the effects of increased carbon dioxide concentration and water regimes on a shrub species, Melastoma malabathricum in a shade house at ambient CO2 and open roof greenhouse at elevated CO2. The factor of water stress was also included, in which for each CO2 treatment, the amount of water was given once or twice daily. The treatment of elevated CO2 was at 800 ppm, when the plants were exposed daily from 0900h until 1100h. The plant growth was monitored through their biomass, height and leaf area that were recorded fortnightly for six months. The results showed that the height of M. malabathricum stem in elevated CO2 was significantly higher than those in ambient CO2. Similarly, leaf area in the elevated CO2 showed a big difference with a value of 46.24 cm2 for elevated CO2 with twice watering, but only 17.94 cm2 for ambient CO2 with twice watering. Even for once watering, we can see the values of leaf area were higher with 32.06 cm2 for elevated and 24.35 cm2 in ambient CO2. The above ground and below ground biomass differed significantly between ambient and elevated CO2. Above ground biomass in ambient CO2 was higher than that in elevated CO2 with a percentage of 25.7%. In contrast, the below ground biomass in elevated CO2 was higher than that in ambient CO2 with a percentage of 17.4%. The results suggested that the increment of CO2 concentrations and water regime in the natural environment may influence the growth and ultimately the abundance and distribution of this shrub species in urban forest.

Original languageEnglish
Title of host publication2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium
PublisherAmerican Institute of Physics Inc.
Volume1784
ISBN (Electronic)9780735414464
DOIs
Publication statusPublished - 17 Nov 2016
Event2016 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2016 - Selangor, Malaysia
Duration: 13 Apr 201614 Apr 2016

Other

Other2016 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2016
CountryMalaysia
CitySelangor
Period13/4/1614/4/16

Fingerprint

biomass
carbon dioxide
leaves
water
carbon dioxide concentration
shades
roofs
greenhouses
stems
interactions

Keywords

  • biomass
  • climate change
  • plant growth
  • shrub
  • urban forest

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Nasir, W. N. A. M., Wan Ahmad, W. J., & Musa, N. L. W. (2016). Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime. In 2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium (Vol. 1784). [060052] American Institute of Physics Inc.. https://doi.org/10.1063/1.4966890

Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime. / Nasir, Wan Nur Ain Mat; Wan Ahmad, Wan Juliana; Musa, Nor Lailatul Wahidah.

2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium. Vol. 1784 American Institute of Physics Inc., 2016. 060052.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Nasir, WNAM, Wan Ahmad, WJ & Musa, NLW 2016, Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime. in 2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium. vol. 1784, 060052, American Institute of Physics Inc., 2016 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2016, Selangor, Malaysia, 13/4/16. https://doi.org/10.1063/1.4966890
Nasir WNAM, Wan Ahmad WJ, Musa NLW. Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime. In 2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium. Vol. 1784. American Institute of Physics Inc. 2016. 060052 https://doi.org/10.1063/1.4966890
Nasir, Wan Nur Ain Mat ; Wan Ahmad, Wan Juliana ; Musa, Nor Lailatul Wahidah. / Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime. 2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium. Vol. 1784 American Institute of Physics Inc., 2016.
@inproceedings{1987041078cd4cb4ae96095babbca9a4,
title = "Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime",
abstract = "Elevated atmospheric CO2 has significant effects on plant growth depending on the species and the interaction between treatments given. In other words, the impacts vary among species, depending on differences in photosynthetic pathways, intrinsic growth rates and other properties. In this research we studied the effects of increased carbon dioxide concentration and water regimes on a shrub species, Melastoma malabathricum in a shade house at ambient CO2 and open roof greenhouse at elevated CO2. The factor of water stress was also included, in which for each CO2 treatment, the amount of water was given once or twice daily. The treatment of elevated CO2 was at 800 ppm, when the plants were exposed daily from 0900h until 1100h. The plant growth was monitored through their biomass, height and leaf area that were recorded fortnightly for six months. The results showed that the height of M. malabathricum stem in elevated CO2 was significantly higher than those in ambient CO2. Similarly, leaf area in the elevated CO2 showed a big difference with a value of 46.24 cm2 for elevated CO2 with twice watering, but only 17.94 cm2 for ambient CO2 with twice watering. Even for once watering, we can see the values of leaf area were higher with 32.06 cm2 for elevated and 24.35 cm2 in ambient CO2. The above ground and below ground biomass differed significantly between ambient and elevated CO2. Above ground biomass in ambient CO2 was higher than that in elevated CO2 with a percentage of 25.7{\%}. In contrast, the below ground biomass in elevated CO2 was higher than that in ambient CO2 with a percentage of 17.4{\%}. The results suggested that the increment of CO2 concentrations and water regime in the natural environment may influence the growth and ultimately the abundance and distribution of this shrub species in urban forest.",
keywords = "biomass, climate change, plant growth, shrub, urban forest",
author = "Nasir, {Wan Nur Ain Mat} and {Wan Ahmad}, {Wan Juliana} and Musa, {Nor Lailatul Wahidah}",
year = "2016",
month = "11",
day = "17",
doi = "10.1063/1.4966890",
language = "English",
volume = "1784",
booktitle = "2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium",
publisher = "American Institute of Physics Inc.",

}

TY - GEN

T1 - Growth responses of Melastoma malabathricum to elevated carbon dioxide and water regime

AU - Nasir, Wan Nur Ain Mat

AU - Wan Ahmad, Wan Juliana

AU - Musa, Nor Lailatul Wahidah

PY - 2016/11/17

Y1 - 2016/11/17

N2 - Elevated atmospheric CO2 has significant effects on plant growth depending on the species and the interaction between treatments given. In other words, the impacts vary among species, depending on differences in photosynthetic pathways, intrinsic growth rates and other properties. In this research we studied the effects of increased carbon dioxide concentration and water regimes on a shrub species, Melastoma malabathricum in a shade house at ambient CO2 and open roof greenhouse at elevated CO2. The factor of water stress was also included, in which for each CO2 treatment, the amount of water was given once or twice daily. The treatment of elevated CO2 was at 800 ppm, when the plants were exposed daily from 0900h until 1100h. The plant growth was monitored through their biomass, height and leaf area that were recorded fortnightly for six months. The results showed that the height of M. malabathricum stem in elevated CO2 was significantly higher than those in ambient CO2. Similarly, leaf area in the elevated CO2 showed a big difference with a value of 46.24 cm2 for elevated CO2 with twice watering, but only 17.94 cm2 for ambient CO2 with twice watering. Even for once watering, we can see the values of leaf area were higher with 32.06 cm2 for elevated and 24.35 cm2 in ambient CO2. The above ground and below ground biomass differed significantly between ambient and elevated CO2. Above ground biomass in ambient CO2 was higher than that in elevated CO2 with a percentage of 25.7%. In contrast, the below ground biomass in elevated CO2 was higher than that in ambient CO2 with a percentage of 17.4%. The results suggested that the increment of CO2 concentrations and water regime in the natural environment may influence the growth and ultimately the abundance and distribution of this shrub species in urban forest.

AB - Elevated atmospheric CO2 has significant effects on plant growth depending on the species and the interaction between treatments given. In other words, the impacts vary among species, depending on differences in photosynthetic pathways, intrinsic growth rates and other properties. In this research we studied the effects of increased carbon dioxide concentration and water regimes on a shrub species, Melastoma malabathricum in a shade house at ambient CO2 and open roof greenhouse at elevated CO2. The factor of water stress was also included, in which for each CO2 treatment, the amount of water was given once or twice daily. The treatment of elevated CO2 was at 800 ppm, when the plants were exposed daily from 0900h until 1100h. The plant growth was monitored through their biomass, height and leaf area that were recorded fortnightly for six months. The results showed that the height of M. malabathricum stem in elevated CO2 was significantly higher than those in ambient CO2. Similarly, leaf area in the elevated CO2 showed a big difference with a value of 46.24 cm2 for elevated CO2 with twice watering, but only 17.94 cm2 for ambient CO2 with twice watering. Even for once watering, we can see the values of leaf area were higher with 32.06 cm2 for elevated and 24.35 cm2 in ambient CO2. The above ground and below ground biomass differed significantly between ambient and elevated CO2. Above ground biomass in ambient CO2 was higher than that in elevated CO2 with a percentage of 25.7%. In contrast, the below ground biomass in elevated CO2 was higher than that in ambient CO2 with a percentage of 17.4%. The results suggested that the increment of CO2 concentrations and water regime in the natural environment may influence the growth and ultimately the abundance and distribution of this shrub species in urban forest.

KW - biomass

KW - climate change

KW - plant growth

KW - shrub

KW - urban forest

UR - http://www.scopus.com/inward/record.url?scp=85014582492&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85014582492&partnerID=8YFLogxK

U2 - 10.1063/1.4966890

DO - 10.1063/1.4966890

M3 - Conference contribution

AN - SCOPUS:85014582492

VL - 1784

BT - 2016 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2016 Postgraduate Colloquium

PB - American Institute of Physics Inc.

ER -