### Abstract

The aim of this paper is to obtain new sufficient conditions for the univalence of the general integral operator I_{m,γ,α1} ^{l}(f_{1}, ..., f_{n})(z) = ((1+n(γ-1)) ∫_{0} ^{z} Π_{i=1} ^{n} (W_{m} ^{l}[α_{1}]f_{i}(t))^{γ-1}dt)^{1/1+n(γ-1)} where W_{m} ^{l}[α_{1}]f_{1}(t) is the Wright generalized hypergeometric functions. Our main results contain some interesting corollaries as special cases.

Original language | English |
---|---|

Pages (from-to) | 1489-1496 |

Number of pages | 8 |

Journal | Information (Japan) |

Volume | 18 |

Issue number | 5 |

Publication status | Published - 1 May 2015 |

### Fingerprint

### Keywords

- Analytic functions
- Hadamard product
- Integral operator
- Wright generalized hypergeometric functions

### ASJC Scopus subject areas

- General

### Cite this

*Information (Japan)*,

*18*(5), 1489-1496.

**General integral operator defined by Wright generalized hypergeometric functions.** / Al-Hawary, Tariq; Frasin, Basem A.; Darus, Maslina.

Research output: Contribution to journal › Article

*Information (Japan)*, vol. 18, no. 5, pp. 1489-1496.

}

TY - JOUR

T1 - General integral operator defined by Wright generalized hypergeometric functions

AU - Al-Hawary, Tariq

AU - Frasin, Basem A.

AU - Darus, Maslina

PY - 2015/5/1

Y1 - 2015/5/1

N2 - The aim of this paper is to obtain new sufficient conditions for the univalence of the general integral operator Im,γ,α1 l(f1, ..., fn)(z) = ((1+n(γ-1)) ∫0 z Πi=1 n (Wm l[α1]fi(t))γ-1dt)1/1+n(γ-1) where Wm l[α1]f1(t) is the Wright generalized hypergeometric functions. Our main results contain some interesting corollaries as special cases.

AB - The aim of this paper is to obtain new sufficient conditions for the univalence of the general integral operator Im,γ,α1 l(f1, ..., fn)(z) = ((1+n(γ-1)) ∫0 z Πi=1 n (Wm l[α1]fi(t))γ-1dt)1/1+n(γ-1) where Wm l[α1]f1(t) is the Wright generalized hypergeometric functions. Our main results contain some interesting corollaries as special cases.

KW - Analytic functions

KW - Hadamard product

KW - Integral operator

KW - Wright generalized hypergeometric functions

UR - http://www.scopus.com/inward/record.url?scp=85000642918&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85000642918&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85000642918

VL - 18

SP - 1489

EP - 1496

JO - Information (Japan)

JF - Information (Japan)

SN - 1343-4500

IS - 5

ER -