Fekete-Szegö problem for concave univalent functions defined by Sələgean operator

Alawiah Ibrahim, Maslina Darus, Sever S. Dragomir

Research output: Contribution to journalArticle

Abstract

Let C0(α) denote the class of concave univalent functions defined in the open unit disk U. In this paper, we investigate the sharp upper bounds of Fekete-Szegö functional with real and complex parameter λ for the class of concave univalent functions defined by Sələgean differential operator.

Original languageEnglish
Pages (from-to)73-86
Number of pages14
JournalItalian Journal of Pure and Applied Mathematics
Volume32
Publication statusPublished - 2014

Fingerprint

Univalent Functions
Concave function
Operator
Unit Disk
Differential operator
Upper bound
Denote
Class

Keywords

  • Concave
  • Sələgean differential operator
  • Univalent function

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

@article{9db2ad82390a4741b69d0f433a7772d3,
title = "Fekete-Szeg{\"o} problem for concave univalent functions defined by Sələgean operator",
abstract = "Let C0(α) denote the class of concave univalent functions defined in the open unit disk U. In this paper, we investigate the sharp upper bounds of Fekete-Szeg{\"o} functional with real and complex parameter λ for the class of concave univalent functions defined by Sələgean differential operator.",
keywords = "Concave, Sələgean differential operator, Univalent function",
author = "Alawiah Ibrahim and Maslina Darus and Dragomir, {Sever S.}",
year = "2014",
language = "English",
volume = "32",
pages = "73--86",
journal = "Italian Journal of Pure and Applied Mathematics",
issn = "1126-8042",
publisher = "Forum Societa Editrice Universitaria Udinese srl",

}

TY - JOUR

T1 - Fekete-Szegö problem for concave univalent functions defined by Sələgean operator

AU - Ibrahim, Alawiah

AU - Darus, Maslina

AU - Dragomir, Sever S.

PY - 2014

Y1 - 2014

N2 - Let C0(α) denote the class of concave univalent functions defined in the open unit disk U. In this paper, we investigate the sharp upper bounds of Fekete-Szegö functional with real and complex parameter λ for the class of concave univalent functions defined by Sələgean differential operator.

AB - Let C0(α) denote the class of concave univalent functions defined in the open unit disk U. In this paper, we investigate the sharp upper bounds of Fekete-Szegö functional with real and complex parameter λ for the class of concave univalent functions defined by Sələgean differential operator.

KW - Concave

KW - Sələgean differential operator

KW - Univalent function

UR - http://www.scopus.com/inward/record.url?scp=84907901811&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84907901811&partnerID=8YFLogxK

M3 - Article

VL - 32

SP - 73

EP - 86

JO - Italian Journal of Pure and Applied Mathematics

JF - Italian Journal of Pure and Applied Mathematics

SN - 1126-8042

ER -