Fekete-Szegö functional for non-Bazilevič functions

Nikola Tuneski, Maslina Darus

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Let f(z) = z + a2z2 + a3z3 + ⋯ be an analytic function in the unit disk U and let the class of non-Bazilevič functions, for 0 < λ < 1, be described with Re {f′(z) (z/f(z))1+λ} > 0, z ∈ U. In this paper we obtain sharp upper bound of |a2| and of the Fekete-Szegö functional |a3 - μa2 2| for the class of non-Bazilevič functions and for some of its subclasses.

Original languageEnglish
Pages (from-to)63-65
Number of pages3
JournalActa Mathematica Academiae Paedagogicae Nyiregyhaziensis
Volume18
Issue number2
Publication statusPublished - 2002

Fingerprint

Unit Disk
Analytic function
Upper bound
Class

Keywords

  • Fekete-Szegö functional
  • Non-Bazilevič function
  • Sharp upper bound

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Fekete-Szegö functional for non-Bazilevič functions. / Tuneski, Nikola; Darus, Maslina.

In: Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, Vol. 18, No. 2, 2002, p. 63-65.

Research output: Contribution to journalArticle

@article{dcf30c8f8830497b807622b1f08b9214,
title = "Fekete-Szeg{\"o} functional for non-Bazilevič functions",
abstract = "Let f(z) = z + a2z2 + a3z3 + ⋯ be an analytic function in the unit disk U and let the class of non-Bazilevič functions, for 0 < λ < 1, be described with Re {f′(z) (z/f(z))1+λ} > 0, z ∈ U. In this paper we obtain sharp upper bound of |a2| and of the Fekete-Szeg{\"o} functional |a3 - μa2 2| for the class of non-Bazilevič functions and for some of its subclasses.",
keywords = "Fekete-Szeg{\"o} functional, Non-Bazilevič function, Sharp upper bound",
author = "Nikola Tuneski and Maslina Darus",
year = "2002",
language = "English",
volume = "18",
pages = "63--65",
journal = "Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis",
issn = "0866-0182",
publisher = "Nyregyhazi Foiskola/College of Nyregyhaza",
number = "2",

}

TY - JOUR

T1 - Fekete-Szegö functional for non-Bazilevič functions

AU - Tuneski, Nikola

AU - Darus, Maslina

PY - 2002

Y1 - 2002

N2 - Let f(z) = z + a2z2 + a3z3 + ⋯ be an analytic function in the unit disk U and let the class of non-Bazilevič functions, for 0 < λ < 1, be described with Re {f′(z) (z/f(z))1+λ} > 0, z ∈ U. In this paper we obtain sharp upper bound of |a2| and of the Fekete-Szegö functional |a3 - μa2 2| for the class of non-Bazilevič functions and for some of its subclasses.

AB - Let f(z) = z + a2z2 + a3z3 + ⋯ be an analytic function in the unit disk U and let the class of non-Bazilevič functions, for 0 < λ < 1, be described with Re {f′(z) (z/f(z))1+λ} > 0, z ∈ U. In this paper we obtain sharp upper bound of |a2| and of the Fekete-Szegö functional |a3 - μa2 2| for the class of non-Bazilevič functions and for some of its subclasses.

KW - Fekete-Szegö functional

KW - Non-Bazilevič function

KW - Sharp upper bound

UR - http://www.scopus.com/inward/record.url?scp=4043114745&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4043114745&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:4043114745

VL - 18

SP - 63

EP - 65

JO - Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis

JF - Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis

SN - 0866-0182

IS - 2

ER -