Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli

Mei Perng Lim, Sheila Nathan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

Original languageEnglish
Title of host publication2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium
EditorsZahari Ibrahim, Haja Maideen Kader Maideen, Nazlina Ibrahim, Nurul Huda Abd Karim, Taufik Yusof, Fatimah Abdul Razak, Nurulkamal Maseran, Rozida Mohd Khalid, Noor Baa'yah Ibrahim, Hasidah Mohd. Sidek, Mohd Salmi Md Noorani, Norbert Simon
PublisherAmerican Institute of Physics Inc.
Pages501-504
Number of pages4
ISBN (Electronic)9780735412507
DOIs
Publication statusPublished - 1 Jan 2014
Event2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014 - Selangor, Malaysia
Duration: 9 Apr 201411 Apr 2014

Publication series

NameAIP Conference Proceedings
Volume1614
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014
CountryMalaysia
CitySelangor
Period9/4/1411/4/14

Fingerprint

Escherichia
peptides
antibiotics
proteins
genes
Southeast Asia
worms
bacteria
animals
therapy
coding

Keywords

  • Antimicrobial peptides
  • B. pseudomallei
  • C. elegans
  • NLP-31

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Lim, M. P., & Nathan, S. (2014). Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli. In Z. Ibrahim, H. M. K. Maideen, N. Ibrahim, N. H. A. Karim, T. Yusof, F. A. Razak, N. Maseran, R. M. Khalid, N. B. Ibrahim, H. M. Sidek, M. S. M. Noorani, ... N. Simon (Eds.), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium (pp. 501-504). (AIP Conference Proceedings; Vol. 1614). American Institute of Physics Inc.. https://doi.org/10.1063/1.4895248

Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli. / Lim, Mei Perng; Nathan, Sheila.

2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. ed. / Zahari Ibrahim; Haja Maideen Kader Maideen; Nazlina Ibrahim; Nurul Huda Abd Karim; Taufik Yusof; Fatimah Abdul Razak; Nurulkamal Maseran; Rozida Mohd Khalid; Noor Baa'yah Ibrahim; Hasidah Mohd. Sidek; Mohd Salmi Md Noorani; Norbert Simon. American Institute of Physics Inc., 2014. p. 501-504 (AIP Conference Proceedings; Vol. 1614).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Lim, MP & Nathan, S 2014, Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli. in Z Ibrahim, HMK Maideen, N Ibrahim, NHA Karim, T Yusof, FA Razak, N Maseran, RM Khalid, NB Ibrahim, HM Sidek, MSM Noorani & N Simon (eds), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Conference Proceedings, vol. 1614, American Institute of Physics Inc., pp. 501-504, 2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014, Selangor, Malaysia, 9/4/14. https://doi.org/10.1063/1.4895248
Lim MP, Nathan S. Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli. In Ibrahim Z, Maideen HMK, Ibrahim N, Karim NHA, Yusof T, Razak FA, Maseran N, Khalid RM, Ibrahim NB, Sidek HM, Noorani MSM, Simon N, editors, 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. American Institute of Physics Inc. 2014. p. 501-504. (AIP Conference Proceedings). https://doi.org/10.1063/1.4895248
Lim, Mei Perng ; Nathan, Sheila. / Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli. 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. editor / Zahari Ibrahim ; Haja Maideen Kader Maideen ; Nazlina Ibrahim ; Nurul Huda Abd Karim ; Taufik Yusof ; Fatimah Abdul Razak ; Nurulkamal Maseran ; Rozida Mohd Khalid ; Noor Baa'yah Ibrahim ; Hasidah Mohd. Sidek ; Mohd Salmi Md Noorani ; Norbert Simon. American Institute of Physics Inc., 2014. pp. 501-504 (AIP Conference Proceedings).
@inproceedings{f8954366e9f144f8a0d24b408d505fa2,
title = "Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli",
abstract = "Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.",
keywords = "Antimicrobial peptides, B. pseudomallei, C. elegans, NLP-31",
author = "Lim, {Mei Perng} and Sheila Nathan",
year = "2014",
month = "1",
day = "1",
doi = "10.1063/1.4895248",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
pages = "501--504",
editor = "Zahari Ibrahim and Maideen, {Haja Maideen Kader} and Nazlina Ibrahim and Karim, {Nurul Huda Abd} and Taufik Yusof and Razak, {Fatimah Abdul} and Nurulkamal Maseran and Khalid, {Rozida Mohd} and Ibrahim, {Noor Baa'yah} and Sidek, {Hasidah Mohd.} and Noorani, {Mohd Salmi Md} and Norbert Simon",
booktitle = "2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium",

}

TY - GEN

T1 - Expression of caenorhabditis elegans antimicrobial peptide NLP-31 in escherichia coli

AU - Lim, Mei Perng

AU - Nathan, Sheila

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

AB - Burkholderia pseudomallei is the causative agent of melioidosis, a fulminant disease endemic in Southeast Asia and Northern Australia. The standardized form of therapy is antibiotics treatment; however, the bacterium has become increasingly resistant to these antibiotics. This has spurred the need to search for alternative therapeutic agents. Antimicrobial peptides (AMPs) are small proteins that possess broad-spectrum antimicrobial activity. In a previous study, the nematode Caenorhabditis elegans was infected by B. pseudomallei and a whole animal transcriptome analysis identified a number of AMP-encoded genes which were induced significantly in the infected worms. One of the AMPs identified is NLP-31 and to date, there are no reports of anti-B. pseudomallei activity demonstrated by NLP-31. To produce NLP-31 protein for future studies, the gene encoding for NLP-31 was cloned into the pET32b expression vector and transformed into Escherichia coli BL21(DE3). Protein expression was induced with 1 mM IPTG for 20 hours at 20°C and recombinant NLP-31 was detected in the soluble fraction. Taken together, a simple optimized heterologous production of AMPs in an E. coli expression system has been successfully developed.

KW - Antimicrobial peptides

KW - B. pseudomallei

KW - C. elegans

KW - NLP-31

UR - http://www.scopus.com/inward/record.url?scp=85063836144&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063836144&partnerID=8YFLogxK

U2 - 10.1063/1.4895248

DO - 10.1063/1.4895248

M3 - Conference contribution

T3 - AIP Conference Proceedings

SP - 501

EP - 504

BT - 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium

A2 - Ibrahim, Zahari

A2 - Maideen, Haja Maideen Kader

A2 - Ibrahim, Nazlina

A2 - Karim, Nurul Huda Abd

A2 - Yusof, Taufik

A2 - Razak, Fatimah Abdul

A2 - Maseran, Nurulkamal

A2 - Khalid, Rozida Mohd

A2 - Ibrahim, Noor Baa'yah

A2 - Sidek, Hasidah Mohd.

A2 - Noorani, Mohd Salmi Md

A2 - Simon, Norbert

PB - American Institute of Physics Inc.

ER -