### Abstract

The existence of positive solution is obtained for a second order m-point boundary value problem (formula Presented) where f ∈ C (R_{+} × R,R_{+}), a ∈ C ((0, 1),R_{+}) and g ∈ C _ R^{m} ^{−2} _{+},R^{+}). The main tool is Krasnosel’skii fixed point theorem on compression and expansion in cone.

Original language | English |
---|---|

Pages (from-to) | 3639-3653 |

Number of pages | 15 |

Journal | Global Journal of Pure and Applied Mathematics |

Volume | 11 |

Issue number | 5 |

Publication status | Published - 2015 |

### Fingerprint

### Keywords

- Krasnosel’skii Fixed point theorem
- M-point boundary value problem
- Positive solutions

### ASJC Scopus subject areas

- Mathematics(all)
- Applied Mathematics

### Cite this

*Global Journal of Pure and Applied Mathematics*,

*11*(5), 3639-3653.

**Existence of positive solution to a second order m-point boundary value problem.** / Mohamed, M.; Jusoh, M. S.; Saian, R.; Fadzil, M. N.; Md. Noorani, Mohd. Salmi.

Research output: Contribution to journal › Article

*Global Journal of Pure and Applied Mathematics*, vol. 11, no. 5, pp. 3639-3653.

}

TY - JOUR

T1 - Existence of positive solution to a second order m-point boundary value problem

AU - Mohamed, M.

AU - Jusoh, M. S.

AU - Saian, R.

AU - Fadzil, M. N.

AU - Md. Noorani, Mohd. Salmi

PY - 2015

Y1 - 2015

N2 - The existence of positive solution is obtained for a second order m-point boundary value problem (formula Presented) where f ∈ C (R+ × R,R+), a ∈ C ((0, 1),R+) and g ∈ C _ Rm −2 +,R+). The main tool is Krasnosel’skii fixed point theorem on compression and expansion in cone.

AB - The existence of positive solution is obtained for a second order m-point boundary value problem (formula Presented) where f ∈ C (R+ × R,R+), a ∈ C ((0, 1),R+) and g ∈ C _ Rm −2 +,R+). The main tool is Krasnosel’skii fixed point theorem on compression and expansion in cone.

KW - Krasnosel’skii Fixed point theorem

KW - M-point boundary value problem

KW - Positive solutions

UR - http://www.scopus.com/inward/record.url?scp=84946051762&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84946051762&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84946051762

VL - 11

SP - 3639

EP - 3653

JO - Global Journal of Pure and Applied Mathematics

JF - Global Journal of Pure and Applied Mathematics

SN - 0973-1768

IS - 5

ER -