Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana

Muhammad Naeem Ul Hassan, Ismanizan Ismail

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.

Original languageEnglish
Title of host publication2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium
PublisherAmerican Institute of Physics Inc.
Volume1678
ISBN (Electronic)9780735413252
DOIs
Publication statusPublished - 25 Sep 2015
Event2015 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2015 - Selangor, Malaysia
Duration: 15 Apr 201516 Apr 2015

Other

Other2015 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2015
CountryMalaysia
CitySelangor
Period15/4/1516/4/15

Fingerprint

proteins
boxes
evaluation
self consistent fields
leucine
enzymes
degradation
rings

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Hassan, M. N. U., & Ismail, I. (2015). Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana. In 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium (Vol. 1678). [030034] American Institute of Physics Inc.. https://doi.org/10.1063/1.4931255

Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana. / Hassan, Muhammad Naeem Ul; Ismail, Ismanizan.

2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. Vol. 1678 American Institute of Physics Inc., 2015. 030034.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Hassan, MNU & Ismail, I 2015, Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana. in 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. vol. 1678, 030034, American Institute of Physics Inc., 2015 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2015, Selangor, Malaysia, 15/4/15. https://doi.org/10.1063/1.4931255
Hassan MNU, Ismail I. Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana. In 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. Vol. 1678. American Institute of Physics Inc. 2015. 030034 https://doi.org/10.1063/1.4931255
Hassan, Muhammad Naeem Ul ; Ismail, Ismanizan. / Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana. 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. Vol. 1678 American Institute of Physics Inc., 2015.
@inproceedings{3b2bf22d23fb4f2d940ccda7158a01f6,
title = "Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana",
abstract = "Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.",
author = "Hassan, {Muhammad Naeem Ul} and Ismanizan Ismail",
year = "2015",
month = "9",
day = "25",
doi = "10.1063/1.4931255",
language = "English",
volume = "1678",
booktitle = "2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium",
publisher = "American Institute of Physics Inc.",

}

TY - GEN

T1 - Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana

AU - Hassan, Muhammad Naeem Ul

AU - Ismail, Ismanizan

PY - 2015/9/25

Y1 - 2015/9/25

N2 - Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.

AB - Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.

UR - http://www.scopus.com/inward/record.url?scp=85006216569&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85006216569&partnerID=8YFLogxK

U2 - 10.1063/1.4931255

DO - 10.1063/1.4931255

M3 - Conference contribution

AN - SCOPUS:85006216569

VL - 1678

BT - 2015 UKM FST Postgraduate Colloquium: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium

PB - American Institute of Physics Inc.

ER -