Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application

Abdullah Abdul Samat, Abdul Azim Jais, Mahendra Rao Somalu, Nafisah Osman, Andanastuti Muchtar, Kean Long Lim

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σd.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σd.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC. [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)617-630
Number of pages14
JournalJournal of Sol-Gel Science and Technology
Volume86
Issue number3
DOIs
Publication statusPublished - 1 Jun 2018

Fingerprint

ethylenediaminetetraacetic acids
Ethylenediaminetetraacetic acid
activated carbon
citrates
solid oxide fuel cells
Solid oxide fuel cells (SOFC)
Edetic Acid
Citric Acid
Activated carbon
Sol-gel process
Protons
Cathodes
cathodes
gels
Powders
conduction
protons
electrical resistivity
direct current
Temperature

Keywords

  • Activated carbon
  • Electrical properties
  • LSC cathode
  • Sol-gel
  • Solid oxide fuel cell

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Chemistry(all)
  • Biomaterials
  • Condensed Matter Physics
  • Materials Chemistry

Cite this

@article{0178ad1c96ab4f4da05913351b8c3163,
title = "Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application",
abstract = "The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σd.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σd.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC. [Figure not available: see fulltext.].",
keywords = "Activated carbon, Electrical properties, LSC cathode, Sol-gel, Solid oxide fuel cell",
author = "Samat, {Abdullah Abdul} and Jais, {Abdul Azim} and Somalu, {Mahendra Rao} and Nafisah Osman and Andanastuti Muchtar and Lim, {Kean Long}",
year = "2018",
month = "6",
day = "1",
doi = "10.1007/s10971-018-4675-1",
language = "English",
volume = "86",
pages = "617--630",
journal = "Journal of Sol-Gel Science and Technology",
issn = "0928-0707",
publisher = "Springer Netherlands",
number = "3",

}

TY - JOUR

T1 - Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application

AU - Samat, Abdullah Abdul

AU - Jais, Abdul Azim

AU - Somalu, Mahendra Rao

AU - Osman, Nafisah

AU - Muchtar, Andanastuti

AU - Lim, Kean Long

PY - 2018/6/1

Y1 - 2018/6/1

N2 - The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σd.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σd.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC. [Figure not available: see fulltext.].

AB - The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σd.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σd.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC. [Figure not available: see fulltext.].

KW - Activated carbon

KW - Electrical properties

KW - LSC cathode

KW - Sol-gel

KW - Solid oxide fuel cell

UR - http://www.scopus.com/inward/record.url?scp=85047146214&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047146214&partnerID=8YFLogxK

U2 - 10.1007/s10971-018-4675-1

DO - 10.1007/s10971-018-4675-1

M3 - Article

AN - SCOPUS:85047146214

VL - 86

SP - 617

EP - 630

JO - Journal of Sol-Gel Science and Technology

JF - Journal of Sol-Gel Science and Technology

SN - 0928-0707

IS - 3

ER -