Effect of triethanolamine

Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation

M. T.M. Ayob, A. F. Ahmad, H. M.K. Mohd, Irman Abdul Rahman, Shahidan Radiman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in the range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.

Original languageEnglish
Title of host publication2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium
EditorsZahari Ibrahim, Haja Maideen Kader Maideen, Nazlina Ibrahim, Nurul Huda Abd Karim, Taufik Yusof, Fatimah Abdul Razak, Nurulkamal Maseran, Rozida Mohd Khalid, Noor Baa'yah Ibrahim, Hasidah Mohd. Sidek, Mohd Salmi Md Noorani, Norbert Simon
PublisherAmerican Institute of Physics Inc.
Pages8-13
Number of pages6
ISBN (Electronic)9780735412507
DOIs
Publication statusPublished - 1 Jan 2014
Event2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014 - Selangor, Malaysia
Duration: 9 Apr 201411 Apr 2014

Publication series

NameAIP Conference Proceedings
Volume1614
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014
CountryMalaysia
CitySelangor
Period9/4/1411/4/14

Fingerprint

ethylenediamine
nanoparticles
irradiation
surfactants
copper oxides
ultrasonic radiation
field emission
x rays
ultrasonics
salts
scanning
estimates
diffraction
metals
spectroscopy
electrons
energy

Keywords

  • Cupric oxide
  • Triethanolamine:ethylenediamine
  • Ultrasonic irradiation

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Ayob, M. T. M., Ahmad, A. F., Mohd, H. M. K., Abdul Rahman, I., & Radiman, S. (2014). Effect of triethanolamine: Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation. In Z. Ibrahim, H. M. K. Maideen, N. Ibrahim, N. H. A. Karim, T. Yusof, F. A. Razak, N. Maseran, R. M. Khalid, N. B. Ibrahim, H. M. Sidek, M. S. M. Noorani, ... N. Simon (Eds.), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium (pp. 8-13). (AIP Conference Proceedings; Vol. 1614). American Institute of Physics Inc.. https://doi.org/10.1063/1.4895161

Effect of triethanolamine : Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation. / Ayob, M. T.M.; Ahmad, A. F.; Mohd, H. M.K.; Abdul Rahman, Irman; Radiman, Shahidan.

2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. ed. / Zahari Ibrahim; Haja Maideen Kader Maideen; Nazlina Ibrahim; Nurul Huda Abd Karim; Taufik Yusof; Fatimah Abdul Razak; Nurulkamal Maseran; Rozida Mohd Khalid; Noor Baa'yah Ibrahim; Hasidah Mohd. Sidek; Mohd Salmi Md Noorani; Norbert Simon. American Institute of Physics Inc., 2014. p. 8-13 (AIP Conference Proceedings; Vol. 1614).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ayob, MTM, Ahmad, AF, Mohd, HMK, Abdul Rahman, I & Radiman, S 2014, Effect of triethanolamine: Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation. in Z Ibrahim, HMK Maideen, N Ibrahim, NHA Karim, T Yusof, FA Razak, N Maseran, RM Khalid, NB Ibrahim, HM Sidek, MSM Noorani & N Simon (eds), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Conference Proceedings, vol. 1614, American Institute of Physics Inc., pp. 8-13, 2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014, Selangor, Malaysia, 9/4/14. https://doi.org/10.1063/1.4895161
Ayob MTM, Ahmad AF, Mohd HMK, Abdul Rahman I, Radiman S. Effect of triethanolamine: Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation. In Ibrahim Z, Maideen HMK, Ibrahim N, Karim NHA, Yusof T, Razak FA, Maseran N, Khalid RM, Ibrahim NB, Sidek HM, Noorani MSM, Simon N, editors, 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. American Institute of Physics Inc. 2014. p. 8-13. (AIP Conference Proceedings). https://doi.org/10.1063/1.4895161
Ayob, M. T.M. ; Ahmad, A. F. ; Mohd, H. M.K. ; Abdul Rahman, Irman ; Radiman, Shahidan. / Effect of triethanolamine : Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation. 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. editor / Zahari Ibrahim ; Haja Maideen Kader Maideen ; Nazlina Ibrahim ; Nurul Huda Abd Karim ; Taufik Yusof ; Fatimah Abdul Razak ; Nurulkamal Maseran ; Rozida Mohd Khalid ; Noor Baa'yah Ibrahim ; Hasidah Mohd. Sidek ; Mohd Salmi Md Noorani ; Norbert Simon. American Institute of Physics Inc., 2014. pp. 8-13 (AIP Conference Proceedings).
@inproceedings{5a0b3692fc344a89b0fc7b10eda2bcff,
title = "Effect of triethanolamine: Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation",
abstract = "Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in the range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.",
keywords = "Cupric oxide, Triethanolamine:ethylenediamine, Ultrasonic irradiation",
author = "Ayob, {M. T.M.} and Ahmad, {A. F.} and Mohd, {H. M.K.} and {Abdul Rahman}, Irman and Shahidan Radiman",
year = "2014",
month = "1",
day = "1",
doi = "10.1063/1.4895161",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
pages = "8--13",
editor = "Zahari Ibrahim and Maideen, {Haja Maideen Kader} and Nazlina Ibrahim and Karim, {Nurul Huda Abd} and Taufik Yusof and Razak, {Fatimah Abdul} and Nurulkamal Maseran and Khalid, {Rozida Mohd} and Ibrahim, {Noor Baa'yah} and Sidek, {Hasidah Mohd.} and Noorani, {Mohd Salmi Md} and Norbert Simon",
booktitle = "2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium",

}

TY - GEN

T1 - Effect of triethanolamine

T2 - Ethylenediamine ratios on cuo nanoparticles prepared by ultrasound irradiation

AU - Ayob, M. T.M.

AU - Ahmad, A. F.

AU - Mohd, H. M.K.

AU - Abdul Rahman, Irman

AU - Radiman, Shahidan

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in the range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.

AB - Coral-spherical-shaped of copper oxide nanoparticles have been successfully synthesized with different ratios of triethanolamine:ethylenediamine surfactant under ultrasonic condition. By controlling the amplitude of the ultrasonic radiation and concentration of metal salt precursors and surfactant, the formation of CuO nanospheres was obtained. Energy dispersive X-ray spectrum confirmed that Cu and O are the only elementary components present with a ratio of approximately 1:1. Furthermore, X-ray powder diffraction spectra for all the examined ratios of CuO showed well crystalline structures. UV-Vis spectroscopy was utilized to estimate the band gap energies of the CuO nanoparticles produced, which were found to be in the range of 2.74 eV to 2.95 eV. The field emission scanning electron micrographs of these nanospheres showed that their dimensions were in the range of 5-30 nm. These results indicate that the triethanolamine:ethylenediamine ratio plays an important role in the formation of different sized CuO nanoparticles, displaying a decrement in particle size with the increment in amount of triethanolamine ratios. This might be the key to synthesizing nanoparticles with specific sizes for various applications.

KW - Cupric oxide

KW - Triethanolamine:ethylenediamine

KW - Ultrasonic irradiation

UR - http://www.scopus.com/inward/record.url?scp=84955318413&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84955318413&partnerID=8YFLogxK

U2 - 10.1063/1.4895161

DO - 10.1063/1.4895161

M3 - Conference contribution

T3 - AIP Conference Proceedings

SP - 8

EP - 13

BT - 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium

A2 - Ibrahim, Zahari

A2 - Maideen, Haja Maideen Kader

A2 - Ibrahim, Nazlina

A2 - Karim, Nurul Huda Abd

A2 - Yusof, Taufik

A2 - Razak, Fatimah Abdul

A2 - Maseran, Nurulkamal

A2 - Khalid, Rozida Mohd

A2 - Ibrahim, Noor Baa'yah

A2 - Sidek, Hasidah Mohd.

A2 - Noorani, Mohd Salmi Md

A2 - Simon, Norbert

PB - American Institute of Physics Inc.

ER -