Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast

Arniza Fitri, Roslan Hashim, Soroush Abolfathi, Khairul Nizam Abdul Maulud

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Abstract: Understanding the dynamics of sediment transport and erosion-deposition patterns in the locality of a coastal structure is vital to evaluating the performance of coastal structures and predicting the changes in coastal dynamics caused by a specific structure. The nearshore hydro-morphodynamic responses to coastal structures vary widely, as these responses are complex functions with numerous parameters, including structural design, sediment and wave dynamics, angle of approach, slope of the coast and the materials making up the beach and structures. This study investigated the sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater protecting the cohesive shore of Carey Island, Malaysia. The data used for this study were collected from field measurements and secondary sources from 2014 to 2015. Sea-bed elevations were monitored every two months starting from December 2014 to October 2015, in order to quantify the sea-bed changes and investigate the erosion-deposition patterns of the cohesive sediment due to the existence of the breakwater. In addition, numerical modelling was also performed to understand the impacts of the breakwater on the nearshore hydrodynamics and investigate the dynamics of fine sediment transport around the breakwater structure. A coupled two-dimensional hydrodynamics-sediment transport model based on Reynolds averaged Navier-Stokes (RANS) equations and cell-centered finite volume method with flexible meshing approach was adopted for this study. Analysis of the results showed that the detached breakwater reduced both current speed and wave height behind the structure by an average of 0.12 m/s and 0.1 m, respectively. Also, the breakwater made it possible for trapped suspended sediment to settle in a sheltered area by approximately 8 cm in height near to the first main segment of the breakwater, from 1 year after its construction. The numerical results were in line with the field measurements, where sediment accumulations were concentrated in the landward area behind the breakwater. In particular, sediment accumulations were concentrated along the main segments of the breakwater structure during the Northeast (NE) season, while concentration near the first main segment of the breakwater were recorded during the Southwest (SW) season. The assessment illustrated that the depositional patterns were influenced strongly by the variations in seasonal hydrodynamic conditions, sediment type, sediment supply and the structural design. Detached breakwaters are rarely considered for cohesive shores; hence, this study provides new, significant benefits for engineers, scientists and coastal management authorities with regard to seasonal dynamic changes affected by a detached breakwater and its performance on a cohesive coast.

Original languageEnglish
Article number1721
JournalWater (Switzerland)
Volume11
Issue number8
DOIs
Publication statusPublished - 1 Aug 2019

Fingerprint

Breakwaters
breakwater
Sediment transport
sediment transport
Hydrodynamics
Coastal zones
erosion
Erosion
coasts
Oceans and Seas
sediments
coast
hydrodynamics
Sediments
Malaysia
coastal structure
Islands
sediment
Structural design
engineers

Keywords

  • Artifitial reef
  • Coastal dynamics
  • Coastal resilience
  • Cohesive sediment
  • Detached low-crested breakwater
  • Erosion-deposition pattern

ASJC Scopus subject areas

  • Biochemistry
  • Geography, Planning and Development
  • Aquatic Science
  • Water Science and Technology

Cite this

Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast. / Fitri, Arniza; Hashim, Roslan; Abolfathi, Soroush; Abdul Maulud, Khairul Nizam.

In: Water (Switzerland), Vol. 11, No. 8, 1721, 01.08.2019.

Research output: Contribution to journalArticle

@article{19ea04ec33a2420eb740ce9dca2b174e,
title = "Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast",
abstract = "Abstract: Understanding the dynamics of sediment transport and erosion-deposition patterns in the locality of a coastal structure is vital to evaluating the performance of coastal structures and predicting the changes in coastal dynamics caused by a specific structure. The nearshore hydro-morphodynamic responses to coastal structures vary widely, as these responses are complex functions with numerous parameters, including structural design, sediment and wave dynamics, angle of approach, slope of the coast and the materials making up the beach and structures. This study investigated the sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater protecting the cohesive shore of Carey Island, Malaysia. The data used for this study were collected from field measurements and secondary sources from 2014 to 2015. Sea-bed elevations were monitored every two months starting from December 2014 to October 2015, in order to quantify the sea-bed changes and investigate the erosion-deposition patterns of the cohesive sediment due to the existence of the breakwater. In addition, numerical modelling was also performed to understand the impacts of the breakwater on the nearshore hydrodynamics and investigate the dynamics of fine sediment transport around the breakwater structure. A coupled two-dimensional hydrodynamics-sediment transport model based on Reynolds averaged Navier-Stokes (RANS) equations and cell-centered finite volume method with flexible meshing approach was adopted for this study. Analysis of the results showed that the detached breakwater reduced both current speed and wave height behind the structure by an average of 0.12 m/s and 0.1 m, respectively. Also, the breakwater made it possible for trapped suspended sediment to settle in a sheltered area by approximately 8 cm in height near to the first main segment of the breakwater, from 1 year after its construction. The numerical results were in line with the field measurements, where sediment accumulations were concentrated in the landward area behind the breakwater. In particular, sediment accumulations were concentrated along the main segments of the breakwater structure during the Northeast (NE) season, while concentration near the first main segment of the breakwater were recorded during the Southwest (SW) season. The assessment illustrated that the depositional patterns were influenced strongly by the variations in seasonal hydrodynamic conditions, sediment type, sediment supply and the structural design. Detached breakwaters are rarely considered for cohesive shores; hence, this study provides new, significant benefits for engineers, scientists and coastal management authorities with regard to seasonal dynamic changes affected by a detached breakwater and its performance on a cohesive coast.",
keywords = "Artifitial reef, Coastal dynamics, Coastal resilience, Cohesive sediment, Detached low-crested breakwater, Erosion-deposition pattern",
author = "Arniza Fitri and Roslan Hashim and Soroush Abolfathi and {Abdul Maulud}, {Khairul Nizam}",
year = "2019",
month = "8",
day = "1",
doi = "10.3390/w11081721",
language = "English",
volume = "11",
journal = "Water (Switzerland)",
issn = "2073-4441",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "8",

}

TY - JOUR

T1 - Dynamics of sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater on a cohesive coast

AU - Fitri, Arniza

AU - Hashim, Roslan

AU - Abolfathi, Soroush

AU - Abdul Maulud, Khairul Nizam

PY - 2019/8/1

Y1 - 2019/8/1

N2 - Abstract: Understanding the dynamics of sediment transport and erosion-deposition patterns in the locality of a coastal structure is vital to evaluating the performance of coastal structures and predicting the changes in coastal dynamics caused by a specific structure. The nearshore hydro-morphodynamic responses to coastal structures vary widely, as these responses are complex functions with numerous parameters, including structural design, sediment and wave dynamics, angle of approach, slope of the coast and the materials making up the beach and structures. This study investigated the sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater protecting the cohesive shore of Carey Island, Malaysia. The data used for this study were collected from field measurements and secondary sources from 2014 to 2015. Sea-bed elevations were monitored every two months starting from December 2014 to October 2015, in order to quantify the sea-bed changes and investigate the erosion-deposition patterns of the cohesive sediment due to the existence of the breakwater. In addition, numerical modelling was also performed to understand the impacts of the breakwater on the nearshore hydrodynamics and investigate the dynamics of fine sediment transport around the breakwater structure. A coupled two-dimensional hydrodynamics-sediment transport model based on Reynolds averaged Navier-Stokes (RANS) equations and cell-centered finite volume method with flexible meshing approach was adopted for this study. Analysis of the results showed that the detached breakwater reduced both current speed and wave height behind the structure by an average of 0.12 m/s and 0.1 m, respectively. Also, the breakwater made it possible for trapped suspended sediment to settle in a sheltered area by approximately 8 cm in height near to the first main segment of the breakwater, from 1 year after its construction. The numerical results were in line with the field measurements, where sediment accumulations were concentrated in the landward area behind the breakwater. In particular, sediment accumulations were concentrated along the main segments of the breakwater structure during the Northeast (NE) season, while concentration near the first main segment of the breakwater were recorded during the Southwest (SW) season. The assessment illustrated that the depositional patterns were influenced strongly by the variations in seasonal hydrodynamic conditions, sediment type, sediment supply and the structural design. Detached breakwaters are rarely considered for cohesive shores; hence, this study provides new, significant benefits for engineers, scientists and coastal management authorities with regard to seasonal dynamic changes affected by a detached breakwater and its performance on a cohesive coast.

AB - Abstract: Understanding the dynamics of sediment transport and erosion-deposition patterns in the locality of a coastal structure is vital to evaluating the performance of coastal structures and predicting the changes in coastal dynamics caused by a specific structure. The nearshore hydro-morphodynamic responses to coastal structures vary widely, as these responses are complex functions with numerous parameters, including structural design, sediment and wave dynamics, angle of approach, slope of the coast and the materials making up the beach and structures. This study investigated the sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater protecting the cohesive shore of Carey Island, Malaysia. The data used for this study were collected from field measurements and secondary sources from 2014 to 2015. Sea-bed elevations were monitored every two months starting from December 2014 to October 2015, in order to quantify the sea-bed changes and investigate the erosion-deposition patterns of the cohesive sediment due to the existence of the breakwater. In addition, numerical modelling was also performed to understand the impacts of the breakwater on the nearshore hydrodynamics and investigate the dynamics of fine sediment transport around the breakwater structure. A coupled two-dimensional hydrodynamics-sediment transport model based on Reynolds averaged Navier-Stokes (RANS) equations and cell-centered finite volume method with flexible meshing approach was adopted for this study. Analysis of the results showed that the detached breakwater reduced both current speed and wave height behind the structure by an average of 0.12 m/s and 0.1 m, respectively. Also, the breakwater made it possible for trapped suspended sediment to settle in a sheltered area by approximately 8 cm in height near to the first main segment of the breakwater, from 1 year after its construction. The numerical results were in line with the field measurements, where sediment accumulations were concentrated in the landward area behind the breakwater. In particular, sediment accumulations were concentrated along the main segments of the breakwater structure during the Northeast (NE) season, while concentration near the first main segment of the breakwater were recorded during the Southwest (SW) season. The assessment illustrated that the depositional patterns were influenced strongly by the variations in seasonal hydrodynamic conditions, sediment type, sediment supply and the structural design. Detached breakwaters are rarely considered for cohesive shores; hence, this study provides new, significant benefits for engineers, scientists and coastal management authorities with regard to seasonal dynamic changes affected by a detached breakwater and its performance on a cohesive coast.

KW - Artifitial reef

KW - Coastal dynamics

KW - Coastal resilience

KW - Cohesive sediment

KW - Detached low-crested breakwater

KW - Erosion-deposition pattern

UR - http://www.scopus.com/inward/record.url?scp=85071050836&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071050836&partnerID=8YFLogxK

U2 - 10.3390/w11081721

DO - 10.3390/w11081721

M3 - Article

AN - SCOPUS:85071050836

VL - 11

JO - Water (Switzerland)

JF - Water (Switzerland)

SN - 2073-4441

IS - 8

M1 - 1721

ER -