Distribution and fate of HCH isomers and DDT metabolites in a tropical environment-case study Cameron Highlands-Malaysia

Naghmeh Saadati, Md. Pauzi Abdullah, Zuriati Zakaria, Majid Rezayi, Nader Hosseinizare

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Background: The serious impact effects of persistent organic pollutants such as organochlorine pesticides, especially dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) have been causing widespread concern, despite effective control on their manufacturing, agricultural and vector practices. In that, in addition to the previous global limitations on DDTs usage, α-HCH, β-HCH and lindane have also became an on-going topic of global relevance based on the latest Stockholm Convention list on 10th of May 2009. Concentrations of dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) were determined by GC-ECD in Cameron Highlands, the main vegetables and flowers farming area in Malaysia as an agricultural tropical environment. A total of 112 surface water and sediment samples at eight points were collected along the main rivers in the area namely Telom and Bertam in the dry and wet seasons of 2011.Results: Total concentration of HCH isomers ranged from not detected to 25.03 ng/L in the water (mean of 5.55 ±6.0 ng/L), while, it ranged from 0.002 to 59.17 ng/g (mean of 8.06±9.39 ng/g) in the sediment. Total concentration of DDT and its metabolites in the water samples varied from not detected to 8.0 ng/L (mean of 0.90±1.66 ng/g), whereas, it was in the range of 0.025 to 23.24 ng/g (mean of 2.55±4.0 ng/g) in the surface sediment samples. The ratio of HCHs and DDTs composition indicated an obvious historical usage and new inputs of these pesticides. Among alpha, beta, gamma and delta isomers of HCH, gamma was the most dominant component in the sediment and water as well. Some seasonal variations in the level of selected pesticides were noted.Conclusions: The results illustrate distribution, behaviour and fate of HCHs, and DDTs have closely connected with topological and meteorological properties of the area beyond their chemical characterizations. The features of environmental circumstances exceed one or more of these characters in importance than the other. Although the results show that the situation is better than 1998, the impact of persistent agrochemicals such as lindane and 4,4′DDE are revealed in a key tropical area of Malaysia.

Original languageEnglish
Article number130
JournalChemistry Central Journal
Volume6
Issue number1
DOIs
Publication statusPublished - 7 Nov 2012

Fingerprint

DDT
Metabolites
Isomers
Lindane
Sediments
Pesticides
Water
Agrochemicals
Organic pollutants
Vegetables
Surface waters
Rivers
Chemical analysis

Keywords

  • Cameron highlands
  • DDTs
  • HCHs
  • POPs
  • Tropical environment

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Distribution and fate of HCH isomers and DDT metabolites in a tropical environment-case study Cameron Highlands-Malaysia. / Saadati, Naghmeh; Abdullah, Md. Pauzi; Zakaria, Zuriati; Rezayi, Majid; Hosseinizare, Nader.

In: Chemistry Central Journal, Vol. 6, No. 1, 130, 07.11.2012.

Research output: Contribution to journalArticle

@article{f79e9cac8fa64d329dfee05e74db9d92,
title = "Distribution and fate of HCH isomers and DDT metabolites in a tropical environment-case study Cameron Highlands-Malaysia",
abstract = "Background: The serious impact effects of persistent organic pollutants such as organochlorine pesticides, especially dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) have been causing widespread concern, despite effective control on their manufacturing, agricultural and vector practices. In that, in addition to the previous global limitations on DDTs usage, α-HCH, β-HCH and lindane have also became an on-going topic of global relevance based on the latest Stockholm Convention list on 10th of May 2009. Concentrations of dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) were determined by GC-ECD in Cameron Highlands, the main vegetables and flowers farming area in Malaysia as an agricultural tropical environment. A total of 112 surface water and sediment samples at eight points were collected along the main rivers in the area namely Telom and Bertam in the dry and wet seasons of 2011.Results: Total concentration of HCH isomers ranged from not detected to 25.03 ng/L in the water (mean of 5.55 ±6.0 ng/L), while, it ranged from 0.002 to 59.17 ng/g (mean of 8.06±9.39 ng/g) in the sediment. Total concentration of DDT and its metabolites in the water samples varied from not detected to 8.0 ng/L (mean of 0.90±1.66 ng/g), whereas, it was in the range of 0.025 to 23.24 ng/g (mean of 2.55±4.0 ng/g) in the surface sediment samples. The ratio of HCHs and DDTs composition indicated an obvious historical usage and new inputs of these pesticides. Among alpha, beta, gamma and delta isomers of HCH, gamma was the most dominant component in the sediment and water as well. Some seasonal variations in the level of selected pesticides were noted.Conclusions: The results illustrate distribution, behaviour and fate of HCHs, and DDTs have closely connected with topological and meteorological properties of the area beyond their chemical characterizations. The features of environmental circumstances exceed one or more of these characters in importance than the other. Although the results show that the situation is better than 1998, the impact of persistent agrochemicals such as lindane and 4,4′DDE are revealed in a key tropical area of Malaysia.",
keywords = "Cameron highlands, DDTs, HCHs, POPs, Tropical environment",
author = "Naghmeh Saadati and Abdullah, {Md. Pauzi} and Zuriati Zakaria and Majid Rezayi and Nader Hosseinizare",
year = "2012",
month = "11",
day = "7",
doi = "10.1186/1752-153X-6-130",
language = "English",
volume = "6",
journal = "Chemistry Central Journal",
issn = "1752-153X",
publisher = "Chemistry Central",
number = "1",

}

TY - JOUR

T1 - Distribution and fate of HCH isomers and DDT metabolites in a tropical environment-case study Cameron Highlands-Malaysia

AU - Saadati, Naghmeh

AU - Abdullah, Md. Pauzi

AU - Zakaria, Zuriati

AU - Rezayi, Majid

AU - Hosseinizare, Nader

PY - 2012/11/7

Y1 - 2012/11/7

N2 - Background: The serious impact effects of persistent organic pollutants such as organochlorine pesticides, especially dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) have been causing widespread concern, despite effective control on their manufacturing, agricultural and vector practices. In that, in addition to the previous global limitations on DDTs usage, α-HCH, β-HCH and lindane have also became an on-going topic of global relevance based on the latest Stockholm Convention list on 10th of May 2009. Concentrations of dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) were determined by GC-ECD in Cameron Highlands, the main vegetables and flowers farming area in Malaysia as an agricultural tropical environment. A total of 112 surface water and sediment samples at eight points were collected along the main rivers in the area namely Telom and Bertam in the dry and wet seasons of 2011.Results: Total concentration of HCH isomers ranged from not detected to 25.03 ng/L in the water (mean of 5.55 ±6.0 ng/L), while, it ranged from 0.002 to 59.17 ng/g (mean of 8.06±9.39 ng/g) in the sediment. Total concentration of DDT and its metabolites in the water samples varied from not detected to 8.0 ng/L (mean of 0.90±1.66 ng/g), whereas, it was in the range of 0.025 to 23.24 ng/g (mean of 2.55±4.0 ng/g) in the surface sediment samples. The ratio of HCHs and DDTs composition indicated an obvious historical usage and new inputs of these pesticides. Among alpha, beta, gamma and delta isomers of HCH, gamma was the most dominant component in the sediment and water as well. Some seasonal variations in the level of selected pesticides were noted.Conclusions: The results illustrate distribution, behaviour and fate of HCHs, and DDTs have closely connected with topological and meteorological properties of the area beyond their chemical characterizations. The features of environmental circumstances exceed one or more of these characters in importance than the other. Although the results show that the situation is better than 1998, the impact of persistent agrochemicals such as lindane and 4,4′DDE are revealed in a key tropical area of Malaysia.

AB - Background: The serious impact effects of persistent organic pollutants such as organochlorine pesticides, especially dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) have been causing widespread concern, despite effective control on their manufacturing, agricultural and vector practices. In that, in addition to the previous global limitations on DDTs usage, α-HCH, β-HCH and lindane have also became an on-going topic of global relevance based on the latest Stockholm Convention list on 10th of May 2009. Concentrations of dichlorodiphenyltrichloroethane family (DDTs) and hexachlorocyclohexane isomers (HCHs) were determined by GC-ECD in Cameron Highlands, the main vegetables and flowers farming area in Malaysia as an agricultural tropical environment. A total of 112 surface water and sediment samples at eight points were collected along the main rivers in the area namely Telom and Bertam in the dry and wet seasons of 2011.Results: Total concentration of HCH isomers ranged from not detected to 25.03 ng/L in the water (mean of 5.55 ±6.0 ng/L), while, it ranged from 0.002 to 59.17 ng/g (mean of 8.06±9.39 ng/g) in the sediment. Total concentration of DDT and its metabolites in the water samples varied from not detected to 8.0 ng/L (mean of 0.90±1.66 ng/g), whereas, it was in the range of 0.025 to 23.24 ng/g (mean of 2.55±4.0 ng/g) in the surface sediment samples. The ratio of HCHs and DDTs composition indicated an obvious historical usage and new inputs of these pesticides. Among alpha, beta, gamma and delta isomers of HCH, gamma was the most dominant component in the sediment and water as well. Some seasonal variations in the level of selected pesticides were noted.Conclusions: The results illustrate distribution, behaviour and fate of HCHs, and DDTs have closely connected with topological and meteorological properties of the area beyond their chemical characterizations. The features of environmental circumstances exceed one or more of these characters in importance than the other. Although the results show that the situation is better than 1998, the impact of persistent agrochemicals such as lindane and 4,4′DDE are revealed in a key tropical area of Malaysia.

KW - Cameron highlands

KW - DDTs

KW - HCHs

KW - POPs

KW - Tropical environment

UR - http://www.scopus.com/inward/record.url?scp=84868307773&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84868307773&partnerID=8YFLogxK

U2 - 10.1186/1752-153X-6-130

DO - 10.1186/1752-153X-6-130

M3 - Article

VL - 6

JO - Chemistry Central Journal

JF - Chemistry Central Journal

SN - 1752-153X

IS - 1

M1 - 130

ER -