Correlation between thoracolumbar curvatures and respiratory function in older adults

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were −46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=−0.23, P<0.05; forced vital capacity: r=−0.32, P<0.05), quiet expiration intercostal thickness (r=−0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=−0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=−0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=−0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures, respiratory muscles and lung function should be taken into consideration in the holistic management of respiratory function among older adults.

Original languageEnglish
Pages (from-to)523-529
Number of pages7
JournalClinical Interventions in Aging
Volume12
DOIs
Publication statusPublished - 15 Mar 2017

Fingerprint

Respiratory Muscles
Thorax
Muscle Strength
Diaphragm
Independent Living
Lung
Respiratory Rate
Muscles
Malaysia
Vital Capacity
Forced Expiratory Volume
Ultrasonography
Cross-Sectional Studies
Pressure
Research

Keywords

  • Aging
  • Lung function
  • Respiratory muscle thickness
  • Thoracolumbar curvatures

ASJC Scopus subject areas

  • Geriatrics and Gerontology

Cite this

@article{731f72e13a704e8787ca85e974df8974,
title = "Correlation between thoracolumbar curvatures and respiratory function in older adults",
abstract = "Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were −46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=−0.23, P<0.05; forced vital capacity: r=−0.32, P<0.05), quiet expiration intercostal thickness (r=−0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=−0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=−0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=−0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures, respiratory muscles and lung function should be taken into consideration in the holistic management of respiratory function among older adults.",
keywords = "Aging, Lung function, Respiratory muscle thickness, Thoracolumbar curvatures",
author = "{Ab. Rahman}, {Nor Najwatul Akmal} and {Ajit Singh}, {Devinder Kaur} and Raymond Lee",
year = "2017",
month = "3",
day = "15",
doi = "10.2147/CIA.S110329",
language = "English",
volume = "12",
pages = "523--529",
journal = "Clinical Interventions in Aging",
issn = "1176-9092",
publisher = "Dove Medical Press Ltd.",

}

TY - JOUR

T1 - Correlation between thoracolumbar curvatures and respiratory function in older adults

AU - Ab. Rahman, Nor Najwatul Akmal

AU - Ajit Singh, Devinder Kaur

AU - Lee, Raymond

PY - 2017/3/15

Y1 - 2017/3/15

N2 - Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were −46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=−0.23, P<0.05; forced vital capacity: r=−0.32, P<0.05), quiet expiration intercostal thickness (r=−0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=−0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=−0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=−0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures, respiratory muscles and lung function should be taken into consideration in the holistic management of respiratory function among older adults.

AB - Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were −46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=−0.23, P<0.05; forced vital capacity: r=−0.32, P<0.05), quiet expiration intercostal thickness (r=−0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=−0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=−0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=−0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures, respiratory muscles and lung function should be taken into consideration in the holistic management of respiratory function among older adults.

KW - Aging

KW - Lung function

KW - Respiratory muscle thickness

KW - Thoracolumbar curvatures

UR - http://www.scopus.com/inward/record.url?scp=85015794599&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85015794599&partnerID=8YFLogxK

U2 - 10.2147/CIA.S110329

DO - 10.2147/CIA.S110329

M3 - Article

VL - 12

SP - 523

EP - 529

JO - Clinical Interventions in Aging

JF - Clinical Interventions in Aging

SN - 1176-9092

ER -