Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department

Dhifaf Azeez, Mohd Alauddin Mohd Ali, Gan Kok Beng, Ismail Mohd. Saiboon

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in term of generalization. It was therefore chosen as the technique to develop the primary triage prediction model. This primary triage model will be combined with the secondary triage prediction model to produce the final triage category as a tool to assist the medical officer in the emergency department.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalSpringerPlus
Volume2
Issue number1
DOIs
Publication statusPublished - 2013

Fingerprint

Triage
Hospital Emergency Service
Disasters
Neural Networks (Computer)
Disease Outbreaks
Emergencies
Point-of-Care Systems
Physicians
Vital Signs
Malaysia
Cluster Analysis
Biomedical Research
Neurons
Sensitivity and Specificity
Infection

Keywords

  • Adaptive neuro-fuzzy inference system
  • Emergency medical services
  • Neural network
  • Triage

ASJC Scopus subject areas

  • General

Cite this

Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. / Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Kok Beng, Gan; Mohd. Saiboon, Ismail.

In: SpringerPlus, Vol. 2, No. 1, 2013, p. 1-10.

Research output: Contribution to journalArticle

@article{fd5c8e5c4e4f455e8c05ef65be403aae,
title = "Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department",
abstract = "Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, {\%}RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in term of generalization. It was therefore chosen as the technique to develop the primary triage prediction model. This primary triage model will be combined with the secondary triage prediction model to produce the final triage category as a tool to assist the medical officer in the emergency department.",
keywords = "Adaptive neuro-fuzzy inference system, Emergency medical services, Neural network, Triage",
author = "Dhifaf Azeez and Ali, {Mohd Alauddin Mohd} and {Kok Beng}, Gan and {Mohd. Saiboon}, Ismail",
year = "2013",
doi = "10.1186/2193-1801-2-416",
language = "English",
volume = "2",
pages = "1--10",
journal = "SpringerPlus",
issn = "2193-1801",
publisher = "Springer Science and Business Media Deutschland GmbH",
number = "1",

}

TY - JOUR

T1 - Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department

AU - Azeez, Dhifaf

AU - Ali, Mohd Alauddin Mohd

AU - Kok Beng, Gan

AU - Mohd. Saiboon, Ismail

PY - 2013

Y1 - 2013

N2 - Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in term of generalization. It was therefore chosen as the technique to develop the primary triage prediction model. This primary triage model will be combined with the secondary triage prediction model to produce the final triage category as a tool to assist the medical officer in the emergency department.

AB - Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in term of generalization. It was therefore chosen as the technique to develop the primary triage prediction model. This primary triage model will be combined with the secondary triage prediction model to produce the final triage category as a tool to assist the medical officer in the emergency department.

KW - Adaptive neuro-fuzzy inference system

KW - Emergency medical services

KW - Neural network

KW - Triage

UR - http://www.scopus.com/inward/record.url?scp=84887296994&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84887296994&partnerID=8YFLogxK

U2 - 10.1186/2193-1801-2-416

DO - 10.1186/2193-1801-2-416

M3 - Article

C2 - 24052927

AN - SCOPUS:84887296994

VL - 2

SP - 1

EP - 10

JO - SpringerPlus

JF - SpringerPlus

SN - 2193-1801

IS - 1

ER -