Coefficient estimates for ruscheweyh derivatives

Maslina Darus, Ajab Akbarally

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We consider functions f, analytic in the unit disc and of the normalized form f (z) =z+Σ, n=2∞ anzn. For functions f∈R ̄δ (β), the class of functions involving the Ruscheweyh derivatives operator, we give sharp upper bounds for the Fekete-Szegö functional

Original languageEnglish
Pages (from-to)1937-1942
Number of pages6
JournalInternational Journal of Mathematics and Mathematical Sciences
Volume2004
Issue number36
DOIs
Publication statusPublished - 2004

Fingerprint

Ruscheweyh Derivative
Coefficient Estimates
Unit Disk
Upper bound
Operator

ASJC Scopus subject areas

  • Mathematics (miscellaneous)

Cite this

Coefficient estimates for ruscheweyh derivatives. / Darus, Maslina; Akbarally, Ajab.

In: International Journal of Mathematics and Mathematical Sciences, Vol. 2004, No. 36, 2004, p. 1937-1942.

Research output: Contribution to journalArticle

@article{872bee5376174e12b1e7b5a08ace315b,
title = "Coefficient estimates for ruscheweyh derivatives",
abstract = "We consider functions f, analytic in the unit disc and of the normalized form f (z) =z+Σ, n=2∞ anzn. For functions f∈R ̄δ (β), the class of functions involving the Ruscheweyh derivatives operator, we give sharp upper bounds for the Fekete-Szeg{\"o} functional",
author = "Maslina Darus and Ajab Akbarally",
year = "2004",
doi = "10.1155/S0161171204309051",
language = "English",
volume = "2004",
pages = "1937--1942",
journal = "International Journal of Mathematics and Mathematical Sciences",
issn = "0161-1712",
publisher = "Hindawi Publishing Corporation",
number = "36",

}

TY - JOUR

T1 - Coefficient estimates for ruscheweyh derivatives

AU - Darus, Maslina

AU - Akbarally, Ajab

PY - 2004

Y1 - 2004

N2 - We consider functions f, analytic in the unit disc and of the normalized form f (z) =z+Σ, n=2∞ anzn. For functions f∈R ̄δ (β), the class of functions involving the Ruscheweyh derivatives operator, we give sharp upper bounds for the Fekete-Szegö functional

AB - We consider functions f, analytic in the unit disc and of the normalized form f (z) =z+Σ, n=2∞ anzn. For functions f∈R ̄δ (β), the class of functions involving the Ruscheweyh derivatives operator, we give sharp upper bounds for the Fekete-Szegö functional

UR - http://www.scopus.com/inward/record.url?scp=17844388057&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17844388057&partnerID=8YFLogxK

U2 - 10.1155/S0161171204309051

DO - 10.1155/S0161171204309051

M3 - Article

VL - 2004

SP - 1937

EP - 1942

JO - International Journal of Mathematics and Mathematical Sciences

JF - International Journal of Mathematics and Mathematical Sciences

SN - 0161-1712

IS - 36

ER -