Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

Original languageEnglish
Title of host publication2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium
EditorsZahari Ibrahim, Haja Maideen Kader Maideen, Nazlina Ibrahim, Nurul Huda Abd Karim, Taufik Yusof, Fatimah Abdul Razak, Nurulkamal Maseran, Rozida Mohd Khalid, Noor Baa'yah Ibrahim, Hasidah Mohd. Sidek, Mohd Salmi Md Noorani, Norbert Simon
PublisherAmerican Institute of Physics Inc.
Pages244-250
Number of pages7
ISBN (Electronic)9780735412507
DOIs
Publication statusPublished - 1 Jan 2014
Event2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014 - Selangor, Malaysia
Duration: 9 Apr 201411 Apr 2014

Publication series

NameAIP Conference Proceedings
Volume1614
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014
CountryMalaysia
CitySelangor
Period9/4/1411/4/14

Fingerprint

oils
formulations
Germany
emulsions
plots
surfactants
methodology
computer programs
water

Keywords

  • Cinnamaldehyde
  • Formation
  • Nanoemulsion
  • Optimization
  • Surfactant

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Asmawati, Wan Mustapha, W. A., Mohamad Yusop, S., Maskat, M. Y., & Shamsuddin, A. F. (2014). Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax. In Z. Ibrahim, H. M. K. Maideen, N. Ibrahim, N. H. A. Karim, T. Yusof, F. A. Razak, N. Maseran, R. M. Khalid, N. B. Ibrahim, H. M. Sidek, M. S. M. Noorani, ... N. Simon (Eds.), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium (pp. 244-250). (AIP Conference Proceedings; Vol. 1614). American Institute of Physics Inc.. https://doi.org/10.1063/1.4895203

Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax. / Asmawati, ; Wan Mustapha, Wan Aida; Mohamad Yusop, Salma; Maskat, Mohamad Yusof; Shamsuddin, Ahmad Fuad.

2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. ed. / Zahari Ibrahim; Haja Maideen Kader Maideen; Nazlina Ibrahim; Nurul Huda Abd Karim; Taufik Yusof; Fatimah Abdul Razak; Nurulkamal Maseran; Rozida Mohd Khalid; Noor Baa'yah Ibrahim; Hasidah Mohd. Sidek; Mohd Salmi Md Noorani; Norbert Simon. American Institute of Physics Inc., 2014. p. 244-250 (AIP Conference Proceedings; Vol. 1614).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Asmawati, , Wan Mustapha, WA, Mohamad Yusop, S, Maskat, MY & Shamsuddin, AF 2014, Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax. in Z Ibrahim, HMK Maideen, N Ibrahim, NHA Karim, T Yusof, FA Razak, N Maseran, RM Khalid, NB Ibrahim, HM Sidek, MSM Noorani & N Simon (eds), 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Conference Proceedings, vol. 1614, American Institute of Physics Inc., pp. 244-250, 2014 Postgraduate Colloquium of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology, UKM FST 2014, Selangor, Malaysia, 9/4/14. https://doi.org/10.1063/1.4895203
Asmawati , Wan Mustapha WA, Mohamad Yusop S, Maskat MY, Shamsuddin AF. Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax. In Ibrahim Z, Maideen HMK, Ibrahim N, Karim NHA, Yusof T, Razak FA, Maseran N, Khalid RM, Ibrahim NB, Sidek HM, Noorani MSM, Simon N, editors, 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. American Institute of Physics Inc. 2014. p. 244-250. (AIP Conference Proceedings). https://doi.org/10.1063/1.4895203
Asmawati, ; Wan Mustapha, Wan Aida ; Mohamad Yusop, Salma ; Maskat, Mohamad Yusof ; Shamsuddin, Ahmad Fuad. / Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax. 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. editor / Zahari Ibrahim ; Haja Maideen Kader Maideen ; Nazlina Ibrahim ; Nurul Huda Abd Karim ; Taufik Yusof ; Fatimah Abdul Razak ; Nurulkamal Maseran ; Rozida Mohd Khalid ; Noor Baa'yah Ibrahim ; Hasidah Mohd. Sidek ; Mohd Salmi Md Noorani ; Norbert Simon. American Institute of Physics Inc., 2014. pp. 244-250 (AIP Conference Proceedings).
@inproceedings{5ab5903bae294100ae744d30d54774c1,
title = "Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax",
abstract = "This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5{\%} and 10{\%} (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5{\%} (v/v) cinnamaldehyde and 5{\%} (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5{\%} cinnamaldehyde oil and 7.11{\%} Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.",
keywords = "Cinnamaldehyde, Formation, Nanoemulsion, Optimization, Surfactant",
author = "Asmawati and {Wan Mustapha}, {Wan Aida} and {Mohamad Yusop}, Salma and Maskat, {Mohamad Yusof} and Shamsuddin, {Ahmad Fuad}",
year = "2014",
month = "1",
day = "1",
doi = "10.1063/1.4895203",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
pages = "244--250",
editor = "Zahari Ibrahim and Maideen, {Haja Maideen Kader} and Nazlina Ibrahim and Karim, {Nurul Huda Abd} and Taufik Yusof and Razak, {Fatimah Abdul} and Nurulkamal Maseran and Khalid, {Rozida Mohd} and Ibrahim, {Noor Baa'yah} and Sidek, {Hasidah Mohd.} and Noorani, {Mohd Salmi Md} and Norbert Simon",
booktitle = "2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium",

}

TY - GEN

T1 - Characteristics of cinnamaldehyde nanoemulsion prepared using APV-high pressure homogenizer and ultra turrax

AU - Asmawati,

AU - Wan Mustapha, Wan Aida

AU - Mohamad Yusop, Salma

AU - Maskat, Mohamad Yusof

AU - Shamsuddin, Ahmad Fuad

PY - 2014/1/1

Y1 - 2014/1/1

N2 - This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

AB - This work aims at determining the optimized parameter to prepare cinnamaldehyde nanoemulsion by using high pressure homogenizer (2 passes at 900 bar) and ultra turrax T25 (12000 rpm for 5 min). Thirteen formulation of cinnamaldehyde nanoemulsion obtained by Design Expert software were prepared at a range of oil and surfactant concentration between of 5% and 10% (v/v). Commercial cinnamaldehyde was blended with deionized water and Tween 80 (emulsifier). The responses used in obtaining the optimized condition were droplet size, polydispersity index (PDI) and emulsion stability (ζ-potential). Result showed that nanoemulsion prepared using 5% (v/v) cinnamaldehyde and 5% (v/v) Tween 80 and homogenized using high pressure homogenizer (APV, Germany) has the smallest size of droplet. The response surface plots for droplet size showed that droplet size (diameter, nm) decreased as the concentration of cinnamaldehyde oil and Tween 80 decreased. However ζ-potential value (mV) showed an increment as the cinnamaldehyde oil concentration decreased and Tween 80 increased. The optimum formulation as predicted by response surface methodology in order to produce a stable cinnamaldehyde nanoemulsion was at 5% cinnamaldehyde oil and 7.11% Tween 80. At this optimized conditions the droplet size and ζ-potential values were 56.56 nm and -4.32 mV, respectively.

KW - Cinnamaldehyde

KW - Formation

KW - Nanoemulsion

KW - Optimization

KW - Surfactant

UR - http://www.scopus.com/inward/record.url?scp=85056389012&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056389012&partnerID=8YFLogxK

U2 - 10.1063/1.4895203

DO - 10.1063/1.4895203

M3 - Conference contribution

AN - SCOPUS:85056389012

T3 - AIP Conference Proceedings

SP - 244

EP - 250

BT - 2014 UKM FST Postgraduate Colloquium - Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium

A2 - Ibrahim, Zahari

A2 - Maideen, Haja Maideen Kader

A2 - Ibrahim, Nazlina

A2 - Karim, Nurul Huda Abd

A2 - Yusof, Taufik

A2 - Razak, Fatimah Abdul

A2 - Maseran, Nurulkamal

A2 - Khalid, Rozida Mohd

A2 - Ibrahim, Noor Baa'yah

A2 - Sidek, Hasidah Mohd.

A2 - Noorani, Mohd Salmi Md

A2 - Simon, Norbert

PB - American Institute of Physics Inc.

ER -