Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas

Nik Nuraznida Nik Ibrahim, Gires Usup, Asmat Ahmad

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Over the past ten years, marine natural product researchers have expanded the scope of their studies from macroorganisms such as algae to marine microorganisms. The marine environment is believed to be able to provide novel lead against pathogenic microbes that are evolving and developing resistance to existing pharmaceutical agents. In this study, a total of 150 bacterial isolates isolated from Port Klang and Port Tanjung Pelepas were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Entrococcus, faecalis, Pseudomonas aeruginosa and Methicillin-Resistance Staphylococcus aureus (MRSA). Only 10 isolates: PW01, PW02, PB03, and PS (04, 05, 06, 07, 08, 09, and 10) showed strong antibacterial activity. Based on the strongest activity, isolates PW01 and PW02 were selected for secondary screening using well diffusion assay. The dichloromethane extract of Pseudomonas sp. PW01 showed activity against S. aureus (15±0 mm), V. parahaemolyticus (25±1.63 mm) and MRSA (18±0.81 mm). Meanwhile, the diethyl ether extract of Pseudomonas sp. PW02 showed active activity against S. aureus (10±0 mm), V. parahaemolyticus (30±0.94 mm), MRSA (30±0.94 mm), E. coli (22±1.25 mm) and E. faecalis (26±0 mm). Through this study, it was suggested that marine microorganisms may represent an untapped reservoir of biodiversity capable of synthesizing antimicrobial molecules.

Original languageEnglish
Title of host publication2017 UKM FST Postgraduate Colloquium
Subtitle of host publicationProceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium
PublisherAmerican Institute of Physics Inc.
Volume1940
ISBN (Electronic)9780735416321
DOIs
Publication statusPublished - 4 Apr 2018
Event2017 UKM FST Postgraduate Colloquium - Selangor, Malaysia
Duration: 12 Jul 201713 Jul 2017

Other

Other2017 UKM FST Postgraduate Colloquium
CountryMalaysia
CitySelangor
Period12/7/1713/7/17

Fingerprint

staphylococcus
bacteria
screening
pseudomonas
microorganisms
biological diversity
marine environments
diethyl ether
algae
Escherichia
products
molecules

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Ibrahim, N. N. N., Usup, G., & Ahmad, A. (2018). Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas. In 2017 UKM FST Postgraduate Colloquium: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium (Vol. 1940). [020077] American Institute of Physics Inc.. https://doi.org/10.1063/1.5027992

Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas. / Ibrahim, Nik Nuraznida Nik; Usup, Gires; Ahmad, Asmat.

2017 UKM FST Postgraduate Colloquium: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium. Vol. 1940 American Institute of Physics Inc., 2018. 020077.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ibrahim, NNN, Usup, G & Ahmad, A 2018, Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas. in 2017 UKM FST Postgraduate Colloquium: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium. vol. 1940, 020077, American Institute of Physics Inc., 2017 UKM FST Postgraduate Colloquium, Selangor, Malaysia, 12/7/17. https://doi.org/10.1063/1.5027992
Ibrahim NNN, Usup G, Ahmad A. Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas. In 2017 UKM FST Postgraduate Colloquium: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium. Vol. 1940. American Institute of Physics Inc. 2018. 020077 https://doi.org/10.1063/1.5027992
Ibrahim, Nik Nuraznida Nik ; Usup, Gires ; Ahmad, Asmat. / Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas. 2017 UKM FST Postgraduate Colloquium: Proceedings of the University Kebangsaan Malaysia, Faculty of Science and Technology 2017 Postgraduate Colloquium. Vol. 1940 American Institute of Physics Inc., 2018.
@inproceedings{d39a420f4db8412a84ac3840e042d0fb,
title = "Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas",
abstract = "Over the past ten years, marine natural product researchers have expanded the scope of their studies from macroorganisms such as algae to marine microorganisms. The marine environment is believed to be able to provide novel lead against pathogenic microbes that are evolving and developing resistance to existing pharmaceutical agents. In this study, a total of 150 bacterial isolates isolated from Port Klang and Port Tanjung Pelepas were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Entrococcus, faecalis, Pseudomonas aeruginosa and Methicillin-Resistance Staphylococcus aureus (MRSA). Only 10 isolates: PW01, PW02, PB03, and PS (04, 05, 06, 07, 08, 09, and 10) showed strong antibacterial activity. Based on the strongest activity, isolates PW01 and PW02 were selected for secondary screening using well diffusion assay. The dichloromethane extract of Pseudomonas sp. PW01 showed activity against S. aureus (15±0 mm), V. parahaemolyticus (25±1.63 mm) and MRSA (18±0.81 mm). Meanwhile, the diethyl ether extract of Pseudomonas sp. PW02 showed active activity against S. aureus (10±0 mm), V. parahaemolyticus (30±0.94 mm), MRSA (30±0.94 mm), E. coli (22±1.25 mm) and E. faecalis (26±0 mm). Through this study, it was suggested that marine microorganisms may represent an untapped reservoir of biodiversity capable of synthesizing antimicrobial molecules.",
author = "Ibrahim, {Nik Nuraznida Nik} and Gires Usup and Asmat Ahmad",
year = "2018",
month = "4",
day = "4",
doi = "10.1063/1.5027992",
language = "English",
volume = "1940",
booktitle = "2017 UKM FST Postgraduate Colloquium",
publisher = "American Institute of Physics Inc.",

}

TY - GEN

T1 - Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas

AU - Ibrahim, Nik Nuraznida Nik

AU - Usup, Gires

AU - Ahmad, Asmat

PY - 2018/4/4

Y1 - 2018/4/4

N2 - Over the past ten years, marine natural product researchers have expanded the scope of their studies from macroorganisms such as algae to marine microorganisms. The marine environment is believed to be able to provide novel lead against pathogenic microbes that are evolving and developing resistance to existing pharmaceutical agents. In this study, a total of 150 bacterial isolates isolated from Port Klang and Port Tanjung Pelepas were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Entrococcus, faecalis, Pseudomonas aeruginosa and Methicillin-Resistance Staphylococcus aureus (MRSA). Only 10 isolates: PW01, PW02, PB03, and PS (04, 05, 06, 07, 08, 09, and 10) showed strong antibacterial activity. Based on the strongest activity, isolates PW01 and PW02 were selected for secondary screening using well diffusion assay. The dichloromethane extract of Pseudomonas sp. PW01 showed activity against S. aureus (15±0 mm), V. parahaemolyticus (25±1.63 mm) and MRSA (18±0.81 mm). Meanwhile, the diethyl ether extract of Pseudomonas sp. PW02 showed active activity against S. aureus (10±0 mm), V. parahaemolyticus (30±0.94 mm), MRSA (30±0.94 mm), E. coli (22±1.25 mm) and E. faecalis (26±0 mm). Through this study, it was suggested that marine microorganisms may represent an untapped reservoir of biodiversity capable of synthesizing antimicrobial molecules.

AB - Over the past ten years, marine natural product researchers have expanded the scope of their studies from macroorganisms such as algae to marine microorganisms. The marine environment is believed to be able to provide novel lead against pathogenic microbes that are evolving and developing resistance to existing pharmaceutical agents. In this study, a total of 150 bacterial isolates isolated from Port Klang and Port Tanjung Pelepas were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Entrococcus, faecalis, Pseudomonas aeruginosa and Methicillin-Resistance Staphylococcus aureus (MRSA). Only 10 isolates: PW01, PW02, PB03, and PS (04, 05, 06, 07, 08, 09, and 10) showed strong antibacterial activity. Based on the strongest activity, isolates PW01 and PW02 were selected for secondary screening using well diffusion assay. The dichloromethane extract of Pseudomonas sp. PW01 showed activity against S. aureus (15±0 mm), V. parahaemolyticus (25±1.63 mm) and MRSA (18±0.81 mm). Meanwhile, the diethyl ether extract of Pseudomonas sp. PW02 showed active activity against S. aureus (10±0 mm), V. parahaemolyticus (30±0.94 mm), MRSA (30±0.94 mm), E. coli (22±1.25 mm) and E. faecalis (26±0 mm). Through this study, it was suggested that marine microorganisms may represent an untapped reservoir of biodiversity capable of synthesizing antimicrobial molecules.

UR - http://www.scopus.com/inward/record.url?scp=85045620311&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045620311&partnerID=8YFLogxK

U2 - 10.1063/1.5027992

DO - 10.1063/1.5027992

M3 - Conference contribution

AN - SCOPUS:85045620311

VL - 1940

BT - 2017 UKM FST Postgraduate Colloquium

PB - American Institute of Physics Inc.

ER -