A simple flexible cryptosystem for meshed 3D objects and images

Manal Abd Al Jabbar Ahmad Mizher, Riza Sulaiman, Ayman Mahmoud Aref Abdalla, Manar Abduljabbar Ahmad Mizher

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

In cryptography, the previous research generally appears ambiguous and complex to the novice researcher due to the use of complex mathematical equations and rules of cryptography. Moreover, many research approaches lack flexibility in their key length or in their level of encryption. Consequently, combining simplicity, flexibility, and reliability is not easily obtainable in a cryptosystem, especially for larger and more complex data items. Therefore, a new system, called Flexible cryptosystem based on Cellular Automata (FcCA), is proposed here as a novel simplified flexible cryptosystem based on cellular automata (CA). FcCA presents simplified techniques for making CA reversible while creating a robust flexible cryptosystem that performs lossless encryption of three-dimensional (3D) objects and images of different types. It uses pure random CA as a diffusion technique, and it employs a modified existing confusion technique by substituting the static start point with proposed multi-dynamic intersected start points. In addition, FcCA novelty includes using a combination of aspects: random configuration with open boundary conditions, g-th order memory independent-cell technique, and classification of two parts of the encryption key into subkeys. The length and complexity of FcCA subkeys can be controlled easily because the subkeys depend on flexible parameters. Testing and validation of FcCA scrambling level were performed with several criteria including correlation, entropy, peak signal to noise ratio, and value difference degree. Experimental results showed that FcCA has high flexibility, a high level of scrambling, and higher robustness of keys compared to other methods of encryption. In addition, sensitivity analysis showed FcCA to be highly sensitive to changes in the encryption key and encrypted images and objects. Overall, the properties of FcCA demonstrated its effectiveness as a cryptosystem for images and 3D objects.

Original languageEnglish
JournalJournal of King Saud University - Computer and Information Sciences
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

Cryptography
Cellular automata
Sensitivity analysis

Keywords

  • Cellular automata
  • Grayscale
  • Meshed 3D object
  • RGB

ASJC Scopus subject areas

  • Computer Science(all)

Cite this

A simple flexible cryptosystem for meshed 3D objects and images. / Mizher, Manal Abd Al Jabbar Ahmad; Sulaiman, Riza; Abdalla, Ayman Mahmoud Aref; Mizher, Manar Abduljabbar Ahmad.

In: Journal of King Saud University - Computer and Information Sciences, 01.01.2019.

Research output: Contribution to journalArticle

Mizher, Manal Abd Al Jabbar Ahmad ; Sulaiman, Riza ; Abdalla, Ayman Mahmoud Aref ; Mizher, Manar Abduljabbar Ahmad. / A simple flexible cryptosystem for meshed 3D objects and images. In: Journal of King Saud University - Computer and Information Sciences. 2019.
@article{52ea6969a4bb4df39c55d438fa25586d,
title = "A simple flexible cryptosystem for meshed 3D objects and images",
abstract = "In cryptography, the previous research generally appears ambiguous and complex to the novice researcher due to the use of complex mathematical equations and rules of cryptography. Moreover, many research approaches lack flexibility in their key length or in their level of encryption. Consequently, combining simplicity, flexibility, and reliability is not easily obtainable in a cryptosystem, especially for larger and more complex data items. Therefore, a new system, called Flexible cryptosystem based on Cellular Automata (FcCA), is proposed here as a novel simplified flexible cryptosystem based on cellular automata (CA). FcCA presents simplified techniques for making CA reversible while creating a robust flexible cryptosystem that performs lossless encryption of three-dimensional (3D) objects and images of different types. It uses pure random CA as a diffusion technique, and it employs a modified existing confusion technique by substituting the static start point with proposed multi-dynamic intersected start points. In addition, FcCA novelty includes using a combination of aspects: random configuration with open boundary conditions, g-th order memory independent-cell technique, and classification of two parts of the encryption key into subkeys. The length and complexity of FcCA subkeys can be controlled easily because the subkeys depend on flexible parameters. Testing and validation of FcCA scrambling level were performed with several criteria including correlation, entropy, peak signal to noise ratio, and value difference degree. Experimental results showed that FcCA has high flexibility, a high level of scrambling, and higher robustness of keys compared to other methods of encryption. In addition, sensitivity analysis showed FcCA to be highly sensitive to changes in the encryption key and encrypted images and objects. Overall, the properties of FcCA demonstrated its effectiveness as a cryptosystem for images and 3D objects.",
keywords = "Cellular automata, Grayscale, Meshed 3D object, RGB",
author = "Mizher, {Manal Abd Al Jabbar Ahmad} and Riza Sulaiman and Abdalla, {Ayman Mahmoud Aref} and Mizher, {Manar Abduljabbar Ahmad}",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/j.jksuci.2019.03.008",
language = "English",
journal = "Journal of King Saud University - Computer and Information Sciences",
issn = "1319-1578",
publisher = "King Saud University",

}

TY - JOUR

T1 - A simple flexible cryptosystem for meshed 3D objects and images

AU - Mizher, Manal Abd Al Jabbar Ahmad

AU - Sulaiman, Riza

AU - Abdalla, Ayman Mahmoud Aref

AU - Mizher, Manar Abduljabbar Ahmad

PY - 2019/1/1

Y1 - 2019/1/1

N2 - In cryptography, the previous research generally appears ambiguous and complex to the novice researcher due to the use of complex mathematical equations and rules of cryptography. Moreover, many research approaches lack flexibility in their key length or in their level of encryption. Consequently, combining simplicity, flexibility, and reliability is not easily obtainable in a cryptosystem, especially for larger and more complex data items. Therefore, a new system, called Flexible cryptosystem based on Cellular Automata (FcCA), is proposed here as a novel simplified flexible cryptosystem based on cellular automata (CA). FcCA presents simplified techniques for making CA reversible while creating a robust flexible cryptosystem that performs lossless encryption of three-dimensional (3D) objects and images of different types. It uses pure random CA as a diffusion technique, and it employs a modified existing confusion technique by substituting the static start point with proposed multi-dynamic intersected start points. In addition, FcCA novelty includes using a combination of aspects: random configuration with open boundary conditions, g-th order memory independent-cell technique, and classification of two parts of the encryption key into subkeys. The length and complexity of FcCA subkeys can be controlled easily because the subkeys depend on flexible parameters. Testing and validation of FcCA scrambling level were performed with several criteria including correlation, entropy, peak signal to noise ratio, and value difference degree. Experimental results showed that FcCA has high flexibility, a high level of scrambling, and higher robustness of keys compared to other methods of encryption. In addition, sensitivity analysis showed FcCA to be highly sensitive to changes in the encryption key and encrypted images and objects. Overall, the properties of FcCA demonstrated its effectiveness as a cryptosystem for images and 3D objects.

AB - In cryptography, the previous research generally appears ambiguous and complex to the novice researcher due to the use of complex mathematical equations and rules of cryptography. Moreover, many research approaches lack flexibility in their key length or in their level of encryption. Consequently, combining simplicity, flexibility, and reliability is not easily obtainable in a cryptosystem, especially for larger and more complex data items. Therefore, a new system, called Flexible cryptosystem based on Cellular Automata (FcCA), is proposed here as a novel simplified flexible cryptosystem based on cellular automata (CA). FcCA presents simplified techniques for making CA reversible while creating a robust flexible cryptosystem that performs lossless encryption of three-dimensional (3D) objects and images of different types. It uses pure random CA as a diffusion technique, and it employs a modified existing confusion technique by substituting the static start point with proposed multi-dynamic intersected start points. In addition, FcCA novelty includes using a combination of aspects: random configuration with open boundary conditions, g-th order memory independent-cell technique, and classification of two parts of the encryption key into subkeys. The length and complexity of FcCA subkeys can be controlled easily because the subkeys depend on flexible parameters. Testing and validation of FcCA scrambling level were performed with several criteria including correlation, entropy, peak signal to noise ratio, and value difference degree. Experimental results showed that FcCA has high flexibility, a high level of scrambling, and higher robustness of keys compared to other methods of encryption. In addition, sensitivity analysis showed FcCA to be highly sensitive to changes in the encryption key and encrypted images and objects. Overall, the properties of FcCA demonstrated its effectiveness as a cryptosystem for images and 3D objects.

KW - Cellular automata

KW - Grayscale

KW - Meshed 3D object

KW - RGB

UR - http://www.scopus.com/inward/record.url?scp=85063513557&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063513557&partnerID=8YFLogxK

U2 - 10.1016/j.jksuci.2019.03.008

DO - 10.1016/j.jksuci.2019.03.008

M3 - Article

AN - SCOPUS:85063513557

JO - Journal of King Saud University - Computer and Information Sciences

JF - Journal of King Saud University - Computer and Information Sciences

SN - 1319-1578

ER -